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Abstract

Technologies to enable safe and effective collaboration
and coexistence between humans and robots have gained
significant importance in the last few years. A critical com-
ponent useful for realizing this collaborative paradigm is
the understanding of human and robot 3D poses using non-
invasive systems. Therefore, in this paper, we propose a
novel vision-based system leveraging depth data to accu-
rately establish the 3D locations of skeleton joints. Specif-
ically, we introduce the concept of Pose Nowcasting, de-
noting the capability of the proposed system to enhance its
current pose estimation accuracy by jointly learning to fore-
cast future poses. The experimental evaluation is conducted
on two different datasets, providing accurate and real-time
performance and confirming the validity of the proposed
method on both the robotic and human scenarios.

1. Introduction
We are increasingly approaching an era in which humans

and robots will share different spaces and moments of the
day, both in social and working scenarios [43].

Non-invasive camera monitoring combined with specific
computer vision algorithms, such as Robot and Human Pose
Estimators [32, 64], are key and enabling technologies for
safe interaction between humans and robots [10]. For in-
stance, in the Industry 4.0 setting [30], in which the same
workplace is shared between workers and cobots [28], the
ability to detect poses and avoid collisions is fundamental
for safety. Furthermore, recent investigations [56, 57] con-
firm that – rather than the complete removal of humans –
future generations of manufacturing will support the co-
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Figure 1. Estimating current and future poses through 3D Pose
Nowcasting, using depth images as input data, is a fundamental
technology for safe interaction between workers and collaborative
machines in indoor scenarios, such as the Industry 4.0 setting.

existence of humans and cobots, stressing the urgency for
new investigations related to physical and social coworker
coordination [12]. Another possible application setting is
represented by home automation, in which robots can au-
tonomously perform actions but also interact with humans.

In both cases, technologies based on non-invasive sen-
sors that are agnostic with respect to the state of the robot’s
encoders, are highly desirable. A variety of collision detec-
tion systems, especially for the industrial environment, has
been proposed but, unfortunately, they often require the use
of specific sensors [21], markers [26] or access to the robot’s
proprietary software [17], which is not always possible.

Therefore, in this paper, we propose a vision-based sys-
tem able to accurately estimate the 3D poses by learning
to forecast the near future as an auxiliary task. In particu-
lar, we show how the knowledge about the future at training
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time improves the model’s performance in the present.
Given the similarities with the weather forecasting [6],

we refer to this novel paradigm as 3D Pose Nowcasting,
characterized by the following elements: i) the forecasting
regards a brief time span (around a few seconds); ii) we are
not required to access specific physical models or additional
sensors other than the input data (in our case, depth images);
iii) forecasting, in addition to enhancing present estimation,
is important to raise alarms about imminent and unexpected
events (e.g. collisions, hazards).

The proposed method for 3D Pose Nowcasting, outlined
in Figure 1, is based on addressing the task from two dif-
ferent research fields, i.e. 3D Pose Estimation (PE) and 3D
Pose Forecasting (PF), jointly learned during training. In
particular, the model is trained end-to-end to estimate the
3D pose at the current timestep and the 3D poses at the next
future timesteps.

Our approach is based on depth data enabling the devel-
opment of a vision-based system robust to varying or ab-
sent environmental light sources [47], usually common in
indoor scenarios such as workplaces. Besides, depth acqui-
sition devices nowadays are inexpensive, yet accurate [61].
Moreover, in the Sim2Real [23] setting, the use of depth
reduces the domain gap between synthetic and real sce-
narios [49], thus enabling the usage of large-scale datasets
without the time-consuming collecting and labeling proce-
dures required with real data.

From an architectural point of view, PE and PF are tack-
led through two double-branch CNNs, each specialized in
estimating and forecasting joints in 3D world coordinates.
The first branch is composed of a backbone originally de-
veloped for Human Pose Estimation [4] (HPE), while the
second one is obtained by exploiting a motion encoder
based on a recurrent neural network, that processes a se-
quence of past joint locations. The 3D world-coordinate lo-
cations of each joint are given in output in real-time, lever-
aging the recent Semi-Perspective Decoupled Heatmaps
(SPDH) [49] as an intermediate representation of poses. To
train the model, a double loss is used to optimize both the
current pose and the future poses. This is justified by the
fact that we want the forecasting loss to influence and im-
prove the estimate at the current timestep.

Summarizing, the main contributions of our paper are:

• We introduce the novel paradigm of 3D Pose Now-
casting, a combination of 3D Pose Estimation and 3D
Pose Forecasting in a joint optimization framework.
By learning to predict the future, our model improves
its pose estimation accuracy in the present.

• We demonstrate the robustness of our approach in the
Sim2Real scenario, enabling effective exploitation of
synthetic data at training time, and also domain trans-
fer capabilities from synthetic to real.

• We obtain state-of-the-art performance in estimating
the current robot’s pose, also providing reliable future
predictions. In addition, we show that 3D Pose Now-
casting can be easily exploited for estimating human
body joints.

2. Related Work

Robot Pose Estimation from Depth. Only a limited
amount of research addresses the task of pose estimation
from depth data. Bohg et al. [5] proposed to use a ran-
dom forest classifier to classify and then group depth maps
pixels, obtaining skeleton joints. A similar approach is re-
ported in [58], in which joint angles are directly regressed
without any segmentation prior. However, these methods
are unable to infer real-world 3D poses, limiting their esti-
mates to joint angles. The large majority of literature works
for robot pose estimation are developed for the RGB do-
main. In general, there are two main approaches: hand-eye
calibration-based and rendering-based. In the former, meth-
ods are based on fiducial markers (e.g. ArUco [16]) placed
on the robot’s end effector, tracked through multiple cam-
eras. Then, a 3D-2D correspondence problem is solved by
relying on forward kinematics or the PnP [33] approach.
Unfortunately, these methods are invasive since they require
the physical application of markers on the robot, which is
not always feasible or practicable. Differently, rendering-
based methods [29, 40] use the render&compare paradigm,
where an optimization algorithm iteratively refines the pose
projected to the image with respect to the camera.

Human Pose Estimation from Depth. Shotton et
al. [48] introduced a pioneering approach based on a ran-
dom forest classifier to classify pixels enabling the segmen-
tation of the human body. The 3D joint candidates are then
identified through a weighted density estimator. Using simi-
lar features, in [60] the authors proposed to use a regression
tree to predict the probability distribution of the direction
of a specific joint. Entering the deep learning-based field,
some works introduce the use of NNs in combination with
a single depth frame. In [55], a specific memory module
referred to as Convolutional Memory Block is introduced,
merging the power of CNNs and a memory mechanism used
to handle depth data. More recently, [14] introduced a cap-
sule autoencoder network based on fast Variational Bayes
capsule routing, focusing on improving viewpoint general-
ization both on intensity and depth data. Other works are
based on point clouds sampled from depth data. In par-
ticular, the method described in [62] is based on a point
clouds proposal module followed by a 3D pose regression
module. Similarly, the same authors in [63] introduced a
sequential pose estimation module based on a window of
different frames, improving the general performance at the
cost of increasing computational complexity. Finally, some
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Figure 2. Overview of the proposed 3D Pose Nowcasting framework. First, features related to the depth map and the past poses are
extracted. These features are then concatenated and fed to two different branches, i.e. the Pose Estimation and Pose Forecasting ones.
Finally, the framework outputs the current and the near-future 3D poses. For the sake of visualization, heatmaps are stacked channel-wise.

literature works have been developed originally for the hand
pose estimation task [19, 39, 59] and then adapted to tackle
also the human pose estimation task.

Pose Forecasting. Recently, Sampieri et al. [46] pro-
posed a graph convolutional neural network to jointly model
robot arms and human operators from RGB images. Their
goal is to anticipate human-robot collisions. In this work,
we follow this research direction and we leverage a tra-
jectory forecasting architecture to improve the current 3D
robot pose estimate while also providing information about
the future locations of robots and humans. From a general
point of view, a large crop of literature has addressed motion
forecasting tasks, especially in automotive [25, 31, 35, 37]
and human behavior understanding [8, 9, 13, 42, 52]. The
task can be framed as an encoder-decoder problem, where
past motion is projected into a latent state and then de-
coded into a plausible future [2, 31]. Interestingly, most
approaches formulate the forecasting task as a multimodal
prediction task, due to the intrinsic uncertainty of the prob-
lem [18, 31, 45, 54]. More recently, several works have ad-
dressed the task of forecasting human poses. Compared to
the automotive setting, this is a much more complex sce-
nario, since body joints can move erratically and the po-
sition of the whole skeleton must be predicted at every
timestep. Here, graph-based representations play an impor-
tant role, since body joints can be naturally represented as
connected nodes [1,34,44,50]. Unlike these methods, Man-
galam et al. [36] fused 3D skeletons, camera ego-motion
and monocular depth estimates to forecast body poses. In
a similar way, we propose a depth-based approach for pose

estimation and forecasting. Differently from [36], we focus
on robot poses and, instead of observing a full sequence of
depth and joints, we blend the current depth with an encod-
ing of autoregressively generated past joints.

Depth-based datasets for Pose Estimation and Fore-
casting. We observe a substantial lack of datasets that can
be used for robot pose estimation and forecasting starting
from depth data. Recently, four different datasets have
been introduced in the literature, but totally based on RGB
data. Released in 2019, the CRAVES [65] dataset con-
sists of synthetic and real acquisitions of a single type of
robotic arm, for a total of about 5k frames. DREAM [32]
and WIM [40], introduced in 2020 and 2022, contain 350k
and 140k intensity frames, respectively, depicting different
types of robots. One of the most recent datasets is referred
to as CHICO [46]. Expressively introduced for collision
detection in human-robot interaction, it collects more than
1 million frames acquired with multiple RGB cameras 1.
Therefore, the only dataset exploitable to test our method is
the recent SimBa [49], consisting of more than 370k frames
depicting the Rethink Baxter robot performing pick-and-
place operations in random locations. This dataset has been
acquired in the Sim2Real [23] scenario, i.e. the training and
testing frames belong to two different domains: synthetic
(generated through ROS and Gazebo [27] simulator) and
real (acquired through the time-of-flight Microsoft Kinect
v2 depth device). SimBa is suitable for our task due to the
presence of video sequences, collected at 30 fps.

1This dataset presents corrupted 3D joint annotations on images not yet
fixed by the authors, making it impossible for us to adopt it.



With regard to the estimation of human poses, we adopt
the ITOP dataset [20], which has been used as a benchmark
by several prior works [14, 15, 55,62, 63]. Also in this case,
we observe a substantial lack of depth-based datasets in the
literature, suitable for our method, for different motivations.
Human3.6M [24] dataset contains very low-quality depth
images, acquired through the MESA Imaging SR4000 de-
vice. The NTU dataset [53], originally developed for the
human action recognition task, contains good quality depth
data, but unfortunately, the human pose annotations are au-
tomatically provided through the method described in [48],
reducing their accuracy. The mRI dataset [3] appears to be
an interesting dataset but depth data have yet to be released,
at the time of writing.

3. Proposed Method
An overview of the proposed framework is depicted

in Figure 2. It is organized in an encoder-decoder fash-
ion that is split into two input branches and two output
branches. The encoder extracts visual and temporal embed-
dings, while the decoder consists of the Pose Nowcasting
block, which is made of two SPDH [49] branches dedicated
to pose estimation and pose forecasting.

From a formal point of view, the encoder can be viewed
as a single frame 2D depth input branch Π(·) and a tempo-
ral 3D joint recurrent input branch Γ(·). For a depth image
D and a sequence of t = 1, ...,M poses P t

j = [Xt
j , Y

t
j , Z

t
j ]

with j = 1, ..., J 3D joints, two same-size feature maps
Π(D) and Γ(P) are computed and concatenated. The out-
put branches of the nowcasting decoder then independently
generate current and future pose predictions.

3.1. Depth and Past Pose Input Processing

As mentioned, the first input branch is responsible for
extracting the features related to the current pose. In this
case, the input is represented by a depth image that is con-
verted into an XYZ image, formally defined as follows:

IXY Z = π(D ·K−1) (1)

where π is the projection in the 3D space, D is the ma-
trix of distances used to create the depth image and K is
the projection matrix. This kind of depth representation
has been proved to have better generalization capabilities
across different domains with respect to common depth im-
ages [49]. Being aware of the recent and significant ad-
vances in HPE [11], we exploit the well-known HRNet-32
architecture [51], specifically the randomly initialized first
four stages without the last convolution, as the backbone to
extract pose-related features. These features are then con-
catenated with the ones extracted through the other branch,
described as follows.

The second input branch incorporates temporal informa-
tion obtained from previously estimated 3D joint positions:
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Figure 3. Architecture of the Pose Estimation branch. The in-
put is represented by the concatenation of features extracted from
depth maps and past joints. Each uv/uz sub-branch generates the
heatmap-based SPDH [49] representation of 3D joint locations.

this information becomes available as soon as a buffer of
poses of length M is filled by storing the outputs of the
pose estimation block. This branch uses a motion encoder,
implemented as a GRU2, to process higher dimensional em-
beddings of each pose P t

j . Its output is organized into a
C × H

16 × W
16 shaped feature map, which is then processed

with two layers of residual transposed convolutions with
BatchNorm. This architecture is both responsible for pro-
cessing temporal information stored in previously estimated
joints and for adapting the 3D representation to a 2D map
that can be fused with the feature map extracted by Π(·)
from depth images.

3.2. Pose Estimation and Forecasting Branches

Our framework is completed by the nowcasting block
with two output branches jointly solving pose estimation
and forecasting. Both branches exploit the same SPDH [49]
representation, in which the 3D space is decomposed into
two bi-dimensional spaces where skeleton joint locations
are expressed through heatmaps. In particular, the uv space
corresponds to the camera image plane (the front view of the
acquired scene), while the uz space contains the quantized
values of the depth dimension, i.e. a sort of birds-eye view
of the scene with discretized information about the distance
of the joints.

In the pose estimation branch, the SPDH representation
is obtained through the architecture detailed in Figure 3,
consisting of two residual transposed convolution layers fol-
lowed by a BatchNorm and ReLU activation function. The
estimated pose is represented by a set of J × 2 heatmaps,

2Potentially any kind of recurrent architecture such as LSTMs or Trans-
formers could be used. Since our focus is on Nowcasting, we adopt GRUs
as commonly done in the trajectory forecasting literature, leaving the in-
vestigation of different architectures to future research.



mAP (%) ↑
Input Model 2cm 4cm 6cm 8cm 10cm ADD (cm) ↓
Depth ResNet-18 [22] 0.57 9.40 19.99 27.06 44.44 12.20±4.12

2D joints Martinez et al. [38] ∗ 13.70 26.96 37.98 48.40 58.33 10.03±3.53

Depth Pavlakos et al. [41] 3.35 18.15 42.24 61.60 86.15 7.11±0.65

Depth Simoni et al. [49] 6.33 53.75 79.75 93.90 98.12 4.41±1.09

Depth Ours w/o forecasting 16.25 57.51 89.81 99.26 99.81 3.77±0.98

Depth + M past poses Ours 30.68 66.90 92.69 98.02 98.38 3.52±1.30

Table 1. Robot pose estimation results on SimBa. The proposed framework is tested by taking as input a single depth image (“Ours w/o
forecasting”) or a depth image with the previously predicted 3D joints (“Ours”). Method marked with ∗ uses a relative joint representation.

one pair for each joint in the uv and uz spaces.
In the pose forecasting branch, we adopt a lighter archi-

tecture to deal with the multiple SPDH representations that
aim to model the near-future joint locations. In particular,
we use two 2D convolutional layers, with a size of 32, in-
terspersed with a BatchNorm and ReLU activation function.
The forecasted poses are represented as T × (J × 2) future
heatmaps, where T is the forecasting horizon.

For both output branches, final predictions are obtained
as follows: we compute the argmax of the uv heatmaps and
we multiply the resulting values (umax, vmax) with the in-
verse of the camera intrinsics K−1 to obtain the final 3D
coordinates. Differently, with uz heatmaps, we transform
the result of the argmax operation into a continuous value
in the metric space multiplying it with the quantization step
(∆Z) computed in the defined depth range (zmin, zmax).

3.3. Losses

To train the model, we directly optimize the uv/uz
heatmaps, before they are converted into 3D coordinates.
The system is trained end-to-end optimizing the Mean
Squared Error (MSE) loss function L between generated
and ground truth heatmaps:

LPE =
1

|J |
∑
j∈J

||Ht
j − Ĥt

j ||2 (2)

LPF =
1

|J |
∑
j∈J

1

T

t+T∑
k=1

||Ht+k
j − Ĥt+k

j ||2 (3)

L = LPE + LPF (4)

where LPE is the pose estimation loss between the es-
timated pose Ĥt

j and the ground truth Ht
j at the current

timestep t; LPF is the auxiliary pose forecasting loss be-
tween the sequence of k = 1, ..., T generated future poses
Ht+k

j and their corresponding ground truths Ĥt+k
j ; and J

is the set of skeleton joints in both the uv and uz views. Note
that Ĥt

j is generated by the pose estimation branch whether
Ĥt+k

j are generated by the pose forecasting branch.

4. Experimental Validation

4.1. Datasets

SimBa [49] is a recent dataset specifically acquired for the
robot pose estimation task from depth data. It presents
unique features such as the presence of synthetic and real
depth data, acquired with Gazebo and the Microsoft Kinect
v2 sensor. Both domains consist of several sequences of
random pick-and-place operations, acquired through ran-
domly placed cameras (left, right and center). The acquired
depth data leverages the Time-of-Flight technology and has
a spatial resolution of 510×424. This dataset has challenges
due to different domains for training and testing (Sim2Real
scenario) and different positions of the acquisition devices.

ITOP [20] consists of 20 subjects performing 15 different
complex actions, for a total of 50k frames (40k training and
10k testing, as reported in the original paper). Two Struc-
tured Light (SL) depth sensors (Asus Xtion Pro) are used
to acquire data, one placed in front of the subject, and one
placed on the top: in this paper, we focus on the side view, in
which human joints are not fully occluded by the head and
shoulders of the subject. Annotations consist of 2D and 3D
joint coordinates, manually refined to lie inside the body to
address human pose estimation from depth data. Unfortu-
nately, not all annotations are valid, thus limiting the length
of temporally consistent sequences. The challenges of this
dataset are related to the limited quality of depth data, in
terms of spatial resolution (320× 240), depth accuracy (SL
technology [47]), and action complexity, with several oc-
clusions produced during movements.

The proposed system has been trained and tested on the
SimBa dataset [49], specifically created for the estimation
of robotic joints from depth images. In addition, we demon-
strate the generalization capabilities of our approach by test-
ing the system on the ITOP [20] dataset, which has charac-
teristics similar to the context of our interest, albeit applied
to human poses.



mAP (%) ↑
Input Model Horizon 2cm 4cm 6cm 8cm 10cm ADD (cm) ↓
M past poses Linear t 0.31 6.02 15.81 25.78 41.23 16.89±5.73

M past poses Linear t+ 0.5s 0.42 5.54 15.34 25.40 40.58 17.54±6.20

M past poses Linear t+ 1s 0.29 4.78 14.76 23.44 38.08 19.25±6.20

M past poses Linear t+ 1.5s 0.32 4.34 14.11 22.76 36.72 19.75±6.17

M past poses Linear t+ 2s 0.37 3.98 13.72 21.84 35.96 20.04±6.10

M past poses Ours t 5.33 22.77 37.42 57.96 78.05 8.38±3.88

M past poses Ours t+ 0.5s 4.77 20.74 37.31 55.63 76.53 8.61±4.07

M past poses Ours t+ 1s 4.41 19.65 35.58 53.16 73.58 9.09±4.04

M past poses Ours t+ 1.5s 4.12 19.34 33.40 51.65 72.08 9.73±4.23

M past poses Ours t+ 2s 4.02 18.81 32.56 50.32 70.21 10.41±4.59

Depth + M past poses Ours t 30.68 66.90 92.69 98.02 98.38 3.52±1.30

Depth + M past poses Ours t+ 0.5s 31.32 66.04 91.71 97.66 98.33 3.57±1.33

Depth + M past poses Ours t+ 1s 28.89 59.67 84.39 91.04 92.65 4.50±2.25

Depth + M past poses Ours t+ 1.5s 26.41 55.99 78.14 85.93 87.93 5.71±3.48

Depth + M past poses Ours t+ 2s 25.04 53.43 73.52 81.27 83.39 6.85±4.38

Table 2. Results on both robot pose estimation and forecasting on SimBa. The proposed method is compared to a linear model and our
model without the depth-based input branch, while tested in an autoregressive manner.

4.2. Metrics

For the 3D pose estimation and forecasting tasks, we ex-
ploit standard literature metrics, i.e. Average Distance met-
ric (ADD) and mean Average Precision (mAP). The first,
that is the L2 distance expressed in centimeters of all 3D
robot joints to their ground truth positions, conveys the er-
ror related to the translation and rotation in the 3D world
(the lower the better). The second metric is defined as:

mAP =
1

|N |
∑
j∈N

(
∥vj − v̂j∥2 < δ

)
(5)

where N is the number of skeleton joints, vj is the pre-
dicted joint and v̂j is the ground truth. This metric is in-
tended as the accuracy of the ADD using different thresh-
olds (δ = {2, 4, 6, 8, 10} centimeters in our experiments
and it improves the interpretability of results.

4.3. Training

The proposed model is trained for 30 epochs by exploit-
ing the MSE loss for the heatmaps produced by both the
branches for the current and future poses. We use the Adam
optimizer, with an initial learning rate of 10−3, a decay fac-
tor of 10−1 at 50% and 75% of the training procedure and
a batch size of 16. In all experiments, we use the original
dataset splits to train and test the model.

During the training on both datasets, we apply data
augmentation on the point clouds computed from the in-
put depth maps. Specifically, 3D points are randomly
translated with a maximum range of [−20cm,+20cm] and
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Figure 4. Comparison on Simba in terms of mAP using ground
truth and predicted 3D joints as input to pose forecasting branch.

[−30cm,+30cm] for XY and Z axes, respectively. More-
over, the points are rotated with a range of [−5◦,+5◦] for
the XZ axes. In terms of visual appearance, we introduce
a pepper noise on about 15% of the pixels and a random
dropout, consisting in setting with the value 0 several small
portions of the input image: in this manner, we simulate
the presence of depth noise, usually found in real-world
depth sensors, and the presence of non-reflecting surfaces
(on which the depth value is not valid) in the acquired scene.



mAP (%) at 10cm ↑
RF IEF VI RTW CMB REN-9x6x6 A2J V2V∗ DECA-D3 WSM AdaPose Ours

Joint [48] [7] [20] [60] [55] [19] [59] [39] [15] [62] [63] w/o forecasting Ours

Head 63.8 96.2 98.1 97.8 97.7 98.7 98.5 98.3 93.9 98.1 98.4 98.9 98.6
Neck 86.4 85.2 97.5 95.8 98.5 99.4 99.2 99.1 97.9 99.5 98.7 99.0 99.4
Shoulders 83.3 77.2 96.5 94.1 75.9 96.1 96.2 97.2 95.2 94.7 95.4 97.5 97.6
Elbows 73.2 45.4 73.3 77.9 62.7 74.7 78.9 80.4 84.5 82.8 90.7 84.4 84.4
Hands 51.3 30.9 68.7 70.5 84.4 55.2 68.3 67.3 56.5 69.1 82.1 76.8 77.4
Torso 65.0 84.7 85.6 93.8 96.0 98.7 98.5 98.7 99.0 99.7 99.7 98.7 98.8
Hips 50.8 83.5 72.0 80.3 87.9 91.8 90.8 93.2 97.4 95.7 96.4 87.6 90.4
Knees 65.7 81.8 69.0 68.8 84.4 89.0 90.7 91.8 94.6 91.0 94.4 86.8 89.7
Feet 61.3 80.9 60.8 68.4 83.8 81.1 86.9 87.6 92.0 89.9 92.8 75.3 88.0

Upper body 70.7 61.0 84.0 84.8 80.6 − − − 83.0 − − 90.3 90.4
Lower body 59.3 82.1 67.3 72.5 86.5 − − − 95.3 − − 85.5 90.7

Total body 65.8 71.0 77.4 80.5 83.4 84.9 88.0 88.7 88.7 89.6 93.4 88.0 90.6

Table 3. Per-joint results on human pose estimation on ITOP side-view test set. The best result is reported in bold, while the second best is
underlined. As shown, the proposed framework achieves a significant accuracy on the total body, even though not expressively developed
for the HPE task. Method marked with ∗ uses 10 models ensemble.

4.4. Results

We report results on SimBa and ITOP, both with our full
pipeline and with a baseline not leveraging the nowcasting
paradigm. In all experiments, when the model is optimized
to forecast the future, past poses are fed at 10Hz for a dura-
tion of 1s. In output instead, we sample poses at 2Hz with a
temporal horizon of 2s maximum.

Results on SimBa. Table 1 shows results on the SimBa
dataset, reporting mean Average Precision (mAP) using dif-
ferent thresholds (δ = {2, 4, 6, 8, 10} cm) as well as ADD.
We report results using only the depth image (Ours w/o
forecasting) and with the additional input of past predicted
3D joints (Ours). Following [49], we test the same com-
petitors to predict the 3D poses reporting the results in Ta-
ble 1. In particular, we train a ResNet-18 [22] to directly
regress 3D coordinates from depth maps. We then evaluate
the method proposed in [38], a sequence of MLPs trained to
estimate 3D joint coordinates relying on their 2D positions.
This approach only provides relative joint locations with re-
spect to a specific root (the robot base). The third competi-
tor, is based on the volumetric heatmap approach [41], a
representation for encoding 3D locations in a sampled 3D
volume. This approach, in addition to a limited accuracy,
leads to a significant video memory occupation of about
16GB, considerably higher than all the other methods (ap-
proximately 9 times higher than ours, see Section 4.5). Fi-
nally, [49] uses the SPDH representation with a standard
CNN. Even without the use of the GRU input our approach
yields the state of the art on SimBa. Interestingly, when ex-
ploiting past joints’ locations with a recurrent network and
adding the pose forecasting branch, results are improved
further especially at low spatial thresholds, almost doubling
mAP at the 2cm mark.

mAP (%) ↑
Horizon 2cm 4cm 6cm 8cm 10cm ADD (cm) ↓
t 10.19 38.76 64.32 79.12 86.57 6.49
t+ 0.5s 1.94 9.61 21.48 33.91 44.75 17.66
t+ 1s 1.20 6.72 16.39 27.78 38.56 18.94

Table 4. Results on human pose estimation and forecasting on
ITOP side-view test set. The model takes as input both depth and
past poses.

Then, we show in Figure 4 the results for 3D Pose Fore-
casting by comparing mAP at different future timestamps.
As an upper bound, we report results relying on ground
truth past joints’ locations. Interestingly, even when au-
toregressively feeding back estimated joints as input, the
performance drop is limited with a maximum difference of
6% for the 2cm threshold. Finally, as shown in Table 2, it
must be noted that at 1s ADD is roughly 1cm higher than
the ADD at the current timestep prediction, making the ap-
proach suitable for collision detection. Table 2 also shows
a comparison between a simple baseline made of a linear
regressor trained with SGD and our model with only the
encoder-decoder for the forecasting branch. In the latter, the
HRNet backbone extracting information from depth images
is not used. In both configurations, we obtain much worse
results, indicating the non-triviality of the task. In Figure
5 (right) we show qualitative results for poses predicted by
our model with and without the forecasting branch, high-
lighting its importance.

Results on ITOP. We show in Table 3 our results com-
pared to the state-of-the-art. Overall results for all meth-
ods on ITOP are generally worse than on SimBa, due to the



ITOP

Ours w/o forecasting OursDepth

SimBa

Ours w/o forecasting OursDepth

Figure 5. Qualitative examples for both ITOP and SimBa datasets where it can be appreciated the improvement in the pose estimation using
the proposed approach. Green joints represent the ground truth pose, whereas red and violet represent respectively the poses estimated by
our method without future and our full method. Blue regions connect ground truth skeletons and predictions, highlighting errors.

fact human movements are more erratic and complex with
respect to robot arm motion. Moreover, training is made
more challenging by the presence of invalid joints, i.e. joints
without any manual annotation in the dataset. Nonetheless,
on average considering the total body, our approach using a
single depth frame is on par with most competing methods.
Adding the supervision on future timesteps we rank above
all methods except for AdaPose [63], an approach expres-
sively developed for the HPE task (differently from ours)
which obtains a slightly higher mAP metric.

Furthermore, it is interesting to notice which joints ben-
efit the most from nowcasting, i.e. adding the forecasting
branch. In general, the lower body registers a considerable
improvement between the two variants of our approach.
Hips and knees report a gain of approximately +3% mAP,
whereas feet even +13% mAP. Given that feet demonstrate
greater dynamism in comparison to other body joints, they
manifest behavior that is comparatively less erratic than, for
instance, hands, wherein the advantageous outcome is less
apparent.

In Table 4 we show the performance of the framework
addressing the forecasting task, which is more challenging

in the presence of wide movements performed by humans.
These results can be a useful baseline reference for future
works that address the forecasting task on ITOP. In Figure 5
(left) we show qualitative results on ITOP, comparing the
model with the present-only baseline.

4.5. Execution Time Analysis

Our model must be deployable in a work environment,
thus must be efficient for safety applications, e.g. avoid-
ing collisions and hazards. We measured inference time
on an Intel i7 (2.90 GHz) CPU and Nvidia Titan XP GPU.
The pose estimation branch alone runs at 20 FPS. Adding
the forecasting branch, observing autoregressively gener-
ated poses and estimating future ones, the overall inference
time is around 11 FPS with a video memory occupation of
about 1.8GB. Since we feed to the architecture 1 second of
3D poses sampled at 10Hz and estimated by the model it-
self, we can run the whole framework in real-time without
delays. The reaction time after observing the present frame
before estimating the current and future poses is 90ms.



5. Conclusion and Future Work

We introduced the paradigm of 3D Pose Nowcasting, us-
ing depth data. The proposed framework jointly optimizes
pose estimation and forecasting, exploiting two branches
and the SPDH intermediate representation. We obtain state-
of-the-art results in predicting current and near-future robot
poses. The framework is also able to work with humans,
achieving performance comparable with the current litera-
ture competitors on ITOP. In future work, we plan to adopt
Domain Adaptation techniques to reduce the Sim2Real
shift, and the use of recent transformer-based architectures
to model the input sequences. Finally, we highlight the lack
of depth-based datasets regarding human-machine interac-
tion in social and working scenarios. This kind of data could
lead to the realization of real-world collision detection and
anticipation systems.
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