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Abstract. In this paper we address the problem of trajectory predic-
tion, focusing on memory-based models. Such methods are trained to
collect a set of useful samples that can be retrieved and used at test
time to condition predictions. We propose Explainable Sparse Attention
(ESA), a module that can be seamlessly plugged-in into several existing
memory-based state of the art predictors. ESA generates a sparse atten-
tion in memory, thus selecting a small subset of memory entries that are
relevant for the observed trajectory. This enables an explanation of the
model’s predictions with reference to previously observed training sam-
ples. Furthermore, we demonstrate significant improvements on three
trajectory prediction datasets.
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1 Introduction

Decision-making in autonomous vehicles is often hard to explain and interpret due
to the black-box nature of deep learning models, which are commonly deployed on
self-driving cars. This makes it hard to assess responsibilities in case of accidents
or anomalous behaviors and thus poses an obstacle in ensuring safety.

In this paper we focus on the task of trajectory prediction, which is a core
component dedicated to safety in an autonomous driving system. In particular,
we study trajectory prediction methods based on Memory Augmented Neural
Networks (MANN) [32–34,54], which recently have obtained remarkable results.
What makes these models interesting is the capacity to offer a certain degree of
explainability about the predictions. Memory-based trajectory predictors lever-
age a storage of past trajectory representations to obtain cues about previously
observed futures [32,33], likely endpoint goals [54] or information about the
social context [34]. Methods such as MANTRA [32,33] and MemoNet [54] cre-
ate a persistent memory with relevant observations corresponding to training
samples. How memory is accessed plays a pivotal role in the effectiveness of the
model and implies a form of attention to select relevant memory cells. Tradi-
tionally, MANNs generate a read key which is compared with all the elements
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stored in memory. In such a way, individual samples can be retrieved at inference
time to condition predictions based on known motion patterns. This realizes an
effective access-by-content mechanism but does not allow multiple elements to
jointly concur to produce an output.

At the same time, each output can be explained by attributing a certain
relevance to memory samples. Thus, selecting a small subset of samples from
memory provides a way of explaining a decision, since the exact training samples
that lead to a certain prediction can be identified. In this paper we propose
an improved memory controller that we used to read relevant samples. Our
controller is based on sparse attention between the read key and stored samples.
Differently from prior work, this allows the model to combine cues from different
samples, considerably improving the effectiveness of the predictor. By forcing the
attention to be sparse, we can inspect the model decisions with reference to a
restricted number of sample, thus making the model explainable. For this reason
we refer to our proposed method as ESA (Explainable Sparse Attention).

The main contributions of this paper are the following:

– We present ESA, a novel addressing mechanism to enhance memory-based
trajectory predictors using sparse attentions. This enables a global reasoning
involving potentially every sample in memory yet focusing only on relevant
instances. The advantages are twofold: at training time it reduces redun-
dancies in memory and at test time it yields significant improvements in
trajectory prediction benchmarks.

– To address the multimodal nature of the task, we predict multiple futures
using a multi-head controller that attends in different ways to the samples in
memory.

– To leverage information from all memory entries and at the same time exploit
cues from a limited set of training samples, we enhance the memory controller
with a sparsemax activation function [35] instead of a softmax. This allows
the model to condition predictions on a linear combination of a restricted
subset of stored samples.

– Memory Augmented Neural Networks offer explainability by design. We
explore how future predictions can be explained with reference to stored sam-
ples and how sparsemax further improves the quality of the explanations.

2 Related Works

2.1 Trajectory Prediction

The task of trajectory prediction can be formalized as the problem of calculating
the future state of an object, given the observable past states of that same object
plus additional observable variables such as the surrounding map and other agents’
past states. The main source of knowledge resides in past agents’ motion [1,15].
Moreover, an accurate representation of the environment is often sought to pro-
vide physical constraints and obtain physically correct predictions [5,6,25,47,49].
Finally, a lot of effort has gone into modelling the interaction between moving
agents, addressing so-called social dynamics [1,18,20,21,25,30,44,55].
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Trajectory prediction may address pedestrian-only scenarios as well as auto-
motive settings. For the latter a model of the road, such as lane configuration,
is critical [2,5,6,10]. Indeed, road layouts physically constrain the motion of
vehicles. Especially when dealing with pedestrian motion, a correct model of
social interaction allows to improve future trajectory accuracy. When looking
at the autonomous driving scenario, for which most of the trajectories to be
forecasted are from vehicles, there is no clear evidence that social interaction
modelling is beneficial [6,25]. Indeed, a vast number of approaches focused on
modelling pedestrian interactions [1,18,20,21,28,38,45]. An effective and natu-
ral approach to social interaction modelling is applying Graph Neural Networks
(GNN) [22,36,48], modelling agents as nodes.

Recently, a different take to trajectory forecasting has gained traction.
Instead of regressing a sequence of future steps, goal based methods estimate
intentions, i.e. the spatial goal the agent seeks [9,19,31,54,56]. These approaches
proved a high effectiveness attaining state-of-the-art results in many benchmarks.

2.2 Memory and Attention

Traditional Neural Networks have been recently augmented with Memory Mod-
ules yielding a new class of methods: Memory Augmented Neural Networks
(MANN) [16,53]. By augmenting a NN with a memory we enable the capa-
bility to retain a state, similarly to Recurrent Neural Networks (RNN) but with
more flexibility. Differently from RNNs a MANN will rely on an external address-
able memory instead of exploiting a latent state. This is beneficial in terms of
explainability since it is easier to establish a correspondence between memorized
features and inputs. Moreover, external memories can retain information during
the whole training, making it possible to learn rare samples and deal with long-
tail phenomena. The Neural Turing Machine (NTM) is the first known instance
of a MANN, demonstrating the capability to retain information and perform
reasoning on knowledge stored in memory. For this tasks NTMs are superior to
RNNs. NTMS have been recently extended and improved [17,46,50,53]. As we
will show in this work MANNs are extremely flexible and can address a large vari-
ety of problems: person re-identification [39], online learning [40], visual question
answering [24,29] and garment recommendation [8,13].

MANNs have been also proposed to perform trajectory forecasting.
MANTRA is a MANN specifically developed to perform multiple trajectory
prediction [32,33]. Trajectories are encoded with recurrent units and the exter-
nal memory is populated during training. At inference time the key-value store
of the memory is elegantly exploited to obtain multiple predictions out of a sin-
gle input past, simply by addressing multiple features in memory. Recently, an
approach from the same authors, exploited an external differentiable memory
module to learn social rules and perform joint predictions [34]. In this case the
memory is emptied at each episode and controllers are trained to store relevant
features for each agent, allowing the model to exploit the social interactions of
observed agents.
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Fig. 1. General architecture of memory-based trajectory predictors.

Transformer based architectures have shown remarkable performance on
sequence to sequence problems [12,52]. Attention based approaches are especially
interesting since they allow to easily provide explainable outputs. In trajectory
forecasting transformers were applied successfully using both their original and
bidirectional variant [15]. Obtaining explainable outputs is critical, especially for
autonomous driving systems. Recently, using discrete choice models has shown
potential to derive interpretable predictions for trajectory forecasting [23].

3 Memory-Based Trajectory Predictors

Memory-based trajectory predictors are a class of trajectory forecasting models
based on Memory-Augmented Neural Networks (MANN). The main idea is that,
during a training phase, the network learns to build a knowledge base from the
training samples. To this end, a controller is trained to store relevant samples
in an external memory. The memory can then be accessed at inference time to
retrieve relevant information to forecast the future of a given observation. The
success of this approach lies in the fact that the model can match a past trajec-
tory with multiple memory entries and obtain cues about possible outcomes of
previously observed similar patterns. The actual prediction of the model can be
conditioned on this recalled information to leverage additional knowledge rather
than the observed sample alone.

Several variants of memory-based trajectory predictors have been proposed
in literature [32,33,54]. All these methods share the same structure: (i) first,
an encoder learns meaningful representations of the input data; (ii) a writing
controller is trained to store relevant and non redundant samples in memory;
(iii) a reading controller retrieves relevant information; (iv) finally, a decoder
translates the encoded data into a future trajectory. In order to read meaningful
cues to inform the decoding process, memory banks are always treated as an
associative storage divided into keys and values. Existing methods [32,33,54]
mainly differ in the kind of data that memory keys and values represent. Keys,
however, must share a common feature space with the data fed as input to
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Fig. 2. Memory content for MANTRA [32], MANTRA-M [33] and MemoNet [54].
Memories are divided into keys (left) and values (right).

the model. In fact, at inference time, the current observations is encoded into
a latent state which is used to access memory via a similarity function. To
comply with the multimodal nature of the trajectory forecasting task, memory-
based trajectory predictors can generate multiple futures by retrieving K diverse
observations from memory to condition the decoder in different ways. A general
scheme of a memory-based trajectory predictor is shown in Fig. 1.

In this work we consider three different models:

– MANTRA [32] was the first to propose a memory-based trajectory predictor.
Memory is populated using a writing controller which decides whether or
not to store individual samples based on their usefulness for the prediction
task. Memory keys are encodings of past trajectories, while memory values
are encodings of the respective futures.

– The MANTRA model has been improved in [33] to include contextual infor-
mation from the surrounding environment. The model now stores as memory
keys both encodings of the past and of the semantic segmentation of the
surrounding map. We refer to this model as MANTRA-M.

– MemoNet [54] adds a social encoder to produce the latent features, thus
allowing joint predictions for multiple agents and relies on a different memory
structure. Memory keys are still represented by past trajectories but memory
values represent intentions, i.e. final goals where the agent may be directed
to. In addition, MemoNet uses a trainable reading controller and a clustering-
based decoding process to improve the diversity of the predictions.

Overall, whereas the three models share the same structure, they differ in
the information that they store in memory. Most importantly MANTRA and
MANTRA-M use the memory bank to inform the decoder with whole future
trajectories while MemoNet informs the decoder with intentions. Figure 2 sum-
marizes what kind of information is stored in memory for each model.

All the models access memory through a similarity function: cosine similarity
for MANTRA and MANTRA-M and a learnable addresser for MemoNet. It is
important to underline that all the models use their similarity function to retrieve
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Fig. 3. Explainable Sparse Attention. Each head of the controller attends to memory
samples in different ways to generate a prediction.

the top-K samples, which are used to individually generate different futures. In
this paper, we propose to remove the top-K mechanism in favor of a multi-head
sparse attention that combines information from all memory samples at once.

4 Method

In this paper we propose a novel reading controller for memory-based trajectory
predictors named Explainable Sparse Attention (ESA). ESA is divided into mul-
tiple read heads. Heads are dedicated to extracting different information from
memory, which will then be decoded in parallel into multiple diverse futures.
Each head is fed with the encoding of the current observation. A projection
layer maps the input into a latent query vector Q ∈ RM . Similarly, the same
projection is applied to each memory key to obtain a key matrix K ∈ RN×M ,
where N is the number of samples in memory and M the dimension of the pro-
jection space. The query Q and the key matrix K are compared using a scaled
dot product, followed by a sparsemax activation function [35] to obtain attention
weights over memory locations:

αi = sparsemax
(

QiK
T
i√

M

)
(1)

The final reading state is a weighted sum of the memory values V with the
attention scores α = {α0, ..., αN−1} followed by a tanh activation to regularize
the output reading state rs:

rs = tanh

(∑
i

αiVi

)
(2)
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Each head of the ESA controller learns different projections of queries and
keys, thus learning different ways to attend to the samples in memory. An
overview of the ESA controller is shown in Fig. 3.

Differently from prior work, the ESA controller outputs a reading state that
can potentially depend on the whole memory content. This is an advantage since
it allows the model to achieve better generalization capabilities by leveraging
future information from multiple samples instead of just one. This makes the
predictions also more robust to outliers or corrupted samples that might poison
the memory bank and condition the output towards wrong predictions.

4.1 Sparsemax vs Softmax

The ESA controller uses a sparsemax activation function instead of the more
common softmax. Sparsemax is an activation function that is equivalent to the
Euclidean projection of the input vector onto the probability simplex, i.e., the
space of points representing a probability distribution between mutually exclu-
sive categories:

sparsemax(z) = argmin
p∈ΔK−1

‖p − z‖2 , (3)

where z ∈ R
K and ΔK−1 := {p ∈ R

K |1�p = 1,p ≥ 0} is a (K − 1)-dimensional
simplex.

It has been shown that, when the input is projected, it is likely to hit the
boundary of the simplex, making the output sparse [35]. In addition to producing
sparse activations, sparsemax shares most properties of softmax: by definition,
the output is a probability distribution; relative ordering between input elements
is maintained; the output is invariant to constant addition; differentiability.

For memory-based trajectory predictors that perform a top-K sample
retrieval, softmax or sparsemax can be exchanged without affecting the out-
put, since only ordering is important rather than the actual attention values.
The usage of sparsemax in the attention mechanism of ESA, however, affects
the model by changing the importance of individual samples in the decoding
process. There are two important considerations to be made. First, the decoder
will receive a reading state with less noise. Being rs a linear combination of all
memory samples, zeroing out the coefficients of most samples, will allow the
decoder to focus only on elements that are indeed relevant to the current pre-
diction. Second, attending only to a small subset of elements enables a better
model explainability. Attended samples can in fact be used to interpret why the
predictor produces its outputs.

5 Experiments

We demonstrate the effectiveness of the ESA controller by experimenting with
MANTRA [32], MANTRA-M [33] and MemoNet [54]. We compare the origi-
nal models against our improved version with the ESA controller. We use the
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original experimental setting for each model, testing the models on different tra-
jectory prediction datasets. We first provide an overview of the experimental
setting, including datasets and metrics, and we then evaluate the model both
quantitatively and qualitatively.

5.1 Evaluation Metrics and Datasets

We report results using two common metrics for vehicle trajectory prediction:
Average Displacement Error (ADE) and Final Displacement Error (FDE). ADE
is the average L2 error between all future timesteps and FDE is the error at the
final timestep. ADE indicates the overall correctness of a prediction, while FDE
quantifies the quality of a prediction at a given future horizon. Following recent
literature [25,34,54], we take the best out of K predictions to account for the
intrinsic multimodality of the task. To evaluate our models we use the following
datasets:

KITTI [14] The dataset consists of hours of navigation in real-world road
traffic scenarios. Object bounding boxes, tracks, calibrations, depths and IMU
data were acquired through Velodyne laser scanner, GPS localization system
and stereo camera Rig. From these data the trajectories of the vehicles were
extracted and divided into scenarios of fixed length. For the evaluation phase,
we considered the split used in [25,32]. Each example has a total duration of
6 s where the past trajectory is 2 s long and the future trajectory 4 s. The train
dataset contains 8613 examples while the test dataset 2907.

Argoverse [6] This dataset is composed by 325k vehicle trajectories acquired
in an area of 1000 km2 in the cities of Pittsburgh and Miami. In addition to the
trajectories, HD maps containing lane centerlines, traffic direction, ground height
and drivable areas are available. Each example has a duration of 5 s, 2 s for the
past and 3 s for the future. The dataset is split into train, validation and test. We
report results on the validation set v1.1, for which ground truth data is publicly
available.

SDD [42] The Stanford Drone Dataset is composed of pedestrians and bicy-
cles trajectories acquired by a bird’s eye view drone at 2.5 Hz on a university
campus. The split commonly adopted by other state-of-the-art methods (Trajnet
challenge [43]) was used for the experiments. The dataset size is 14k scenarios
where each trajectory is expressed in pixels. Each example is divided into past
trajectories of 3.2 s and future trajectories of 4.8.

5.2 Results

Table 1, Table 2 and Table 3 show the results obtained on the KITTI [14], Argo-
verse [6] and SDD [42] datasets respectively. For KITTI, we added the ESA
controller on MANTRA [32]. The same procedure was done for the Argoverse
dataset, where we have used the MANTRA-M model [33], which leverages both
trajectory and map information. We have used MemoNet [54] for demonstrating
the capabilities of the ESA controller in the SDD dataset. We refer to the three
enhanced models as MANTRA+ESA, MANTRA-M+ESA and MemoNet+ESA.
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Table 1. Results on the KITTI dataset. ESA leads to considerable improvements
against the standard version of MANTRA [32] varying the number of predictions K.

Method ADE FDE

1 s 2 s 3 s 4 s 1 s 2 s 3 s 4 s

K=1 Kalman [32] 0.51 1.14 1.99 3.03 0.97 2.54 4.71 7.41

Linear [32] 0.20 0.49 0.96 1.64 0.40 1.18 2.56 4.73

MLP [32] 0.20 0.49 0.93 1.53 0.40 1.17 2.39 4.12

DESIRE [25] - - - - 0.51 1.44 2.76 4.45

MANTRA [32] 0.24 0.57 1.08 1.78 0.44 1.34 2.79 4.83

MANTRA+ESA 0.24 0.50 0.91 1.48 0.41 1.13 2.30 4.01

K=5 SynthTraj [3] 0.22 0.38 0.59 0.89 0.35 0.73 1.29 2.27

DESIRE [25] - - - - 0.28 0.67 1.22 2.06

MANTRA [32] 0.17 0.36 0.61 0.94 0.30 0.75 1.43 2.48

MANTRA+ESA 0.21 0.35 0.55 0.83 0.31 0.66 1.20 2.11

K=20 DESIRE [25] - - - - - - - 2.04

MANTRA [32] 0.16 0.27 0.40 0.59 0.25 0.49 0.83 1.49

MANTRA+ESA 0.17 0.27 0.38 0.56 0.24 0.47 0.76 1.43

Table 2. Results on Argoverse varying the number of predictions K. Errors in meters.

Method ADE FDE Off-road (%) Memory size

1 s 3 s 1 s 3 s

K=1 MANTRA-M [33] 0.72 2.36 1.25 5.31 1.62% 75,424

MANTRA-M+ESA 0.58 1.76 0.96 3.95 1.84% 9,701

K=6 MANTRA-M [33] 0.56 1.22 0.84 2.30 3.27% 12,467

MANTRA-M+ESA 0.47 0.93 0.68 1.57 2.32% 2,337

K=10 MANTRA-M [33] 0.53 1.00 0.77 1.69 4.17% 6,566

MANTRA-M+ESA 0.44 0.80 0.63 1.20 2.98% 1,799

K=20 MANTRA-M [33] 0.52 0.84 0.73 1.16 7.93% 2,921

MANTRA-M+ESA 0.45 0.73 0.65 0.88 3.14% 1,085

In Table 1 we can observe that MANTRA+ESA significantly lowers the predic-
tion error compared to its MANTRA counterpart, especially for a small number of
predictions and for long term prediction horizons (4 s). Indeed, for the single pre-
diction case (K = 1), FDE at 4s decreases from 4.83 m to 4.01 m, with an improve-
ment of 0.82 m (17.18%). With a higher number of predictions (K = 5), the FDE
error drops from 2.48 m to 2.11 m with a reduction of 0.37 m (14.91%). In almost all
metrics, MANTRA+ESA achieves state-of-the-art results. Similarly, we observe
significant improvements for MANTRA-M+ESA on the Argoverse dataset, com-
pared to its original formulation [33] (Table 2). We report gains up to 1.36 m in the
K = 1 FDE error at 4 s (25.61% improvement). An even larger relative error decre-
ment is reported for K = 6 with an improvement of 31.74%. Similar considerations
can be drawn for the other evaluation settings.

Moreover, we show that the amount of information that the network saves
in memory with the ESA controller is drastically reduced. In Table 2, we can
observe that memory size of MANTRA-M+ESA is significantly smaller than
that of the original model, with a difference of 81.25% (10,130 elements). The
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Table 3. Results on SDD varying the number of predictions K. Errors in pixels.

K = 20

Method ADE FDE Method ADE FDE

Social-STGCNN [36] 20.60 33.10 SimAug [27] 10.27 19.71

Trajectron++ [45] 19.30 32.70 MANTRA [32] 8.96 17.76

SoPhie [44] 16.27 29.38 PCCSNet [51] 8.62 16.16

NMMP [36] 14.67 26.72 PECNet [31] 9.96 15.88

EvolveGraph [26] 13.90 22.90 LB-EBM [37] 8.87 15.61

EvolveGraph [26] 13.90 22.90 Expert-Goals [19] 7.69 14.38

CF-VAE [4] 12.60 22.30 SMEMO [34] 8.11 13.06

Goal-GAN [9] 12.20 22.10 MemoNet [54] 8.56 12.66

P2TIRL [11] 12.58 22.07 MemoNet+ESA 8.02 12.97

K = 5

Method ADE FDE

DESIRE [25] 19.25 34.05

Ridel et al. [41] 14.92 27.97

MANTRA [32] 13.51 27.34

PECNet [31] 12.79 25.98

PCCSNet [51] 12.54 -

TNT [56] 12.23 21.16

SMEMO [34] 11.64 21.12

MemoNet [54] 13.92 27.18

MemoNet+ESA 12.21 23.03

Fig. 4. Comparison between MANTRA-M+ESA and MANTRA-M [33] on Argoverse.
Past trajectories are in blue, ground-truth in green and predictions in red. The gray
region represents the drivable area of the map. (Color figure online)

ESA controller, thanks to its sparse attention and learned weighted combination
of future states read from memory, is able to further reduce redundancy and
space occupancy, as well as guaranteeing better performance. In addition, we
also have a relevant improvement in the number of generated predictions that
do not go off-road. Interestingly, with 20 predictions, we manage to reduce the
number trajectories that go astray by half (7.93% vs 3.14%). As we can see
from the qualitative examples in Fig. 4 and Fig. 5, the ESA controller allows to
generate trajectories with a better multi-modality than the classic MANTRA
versions. This yields a lower error and demonstrates the importance of having
a model that is able to explore all the plausible directions and speeds, given a
certain past movement and context.

In the experiment with the SDD dataset (Table 3), we can observe large gains
for K = 5. For K = 20 the results generated by Memonet+ESA are similar to the
ones obtained with the original MemoNet formulation, with an improvement for
ADE and a slight drop for FDE when predicting 20 different futures. Nonethe-
less, using the ESA controller, we are able to reduce significantly the memory
footprint. Indeed, in Table 4, we can observe that with only 7104 elements in
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Fig. 5. Comparison between MANTRA+ESA and MANTRA on KITTI. Past tra-
jectory is in blue, ground-truth in green and predictions in red. (Color figure online)

Table 4. Comparison of the results as
the ratio of the Memonet thresholds
varies with Memonet+ESA.

MemoNet θpast/θint ADE/FDE Memory size

w/o ESA 0 8.65/12.84 17970 (100.0%)

0.5 8.59/12.70 15442 (85.9%)

1 8.56/12.66 14652 (81.5%)

5 9.22/14.29 10698 (59.5%)

10 9.64/15.57 6635 (36.9%)

w/ ESA - 8.02/12.97 7104 (39.5%)
Fig. 6. MemoNet+ESA and MemoNet
comparison on SDD. Blue: past; green:
ground-truth; red: predictions. (Color
figure online)

memory we can reach similar results to MemoNet, which instead requires 14,652
elements in memory (46% difference).

In MemoNet, memory is initialized by writing all past and intention features
available in the training data and then a filtering algorithm erases redundant
memory instances. The algorithm removes all those elements with similar start-
ing and ending points. The metric used is the L2-norm and the proximity thresh-
old is determined by two configurable parameters, θpast and θint, related to start-
ing point and destination distance respectively. In our MemoNet+ESA model
we retain the classic memory controller used with key-value memory augmented
networks [7,13,32,33], which directly optimizes redundancies with a task loss and
does not require memory filtering. Our final memory has a size of 7104 samples.
In MemoNet instead, as the ratio of the filtering algorithm thresholds varies, the
results change significantly. With a memory size similar to ours (θpast/θint = 10,
memory size of 6635) FDE is about 17% lower. At the same time, MemoNet
requires twice the samples in memory compared to MemoNet+ESA to obtain
a comparable error rate. In Fig. 6 we show a qualitative comparison on SDD
between MemoNet and MemoNet+ESA.
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Fig. 7. Explainability analysis on Argoverse. The first column contains the predictions
generated with sparsemax and softmax. For each prediction we show the attention
vector over memory locations (bottom) and we plot the sum of the semantic maps
(left) and the trajectories (right), both weighed by ESA attention.

5.3 Explainability

Providing explainable outputs is a fundamental and crucial aspect for autonomous
driving. Since predictors are to be deployed in safety-critical systems, what causes
a behavior must be interpretable and observable. One of the advantages of using
memory-based trajectory predictors is to explicitly have a link between the mem-
ory features used to generate the prediction and the associated training samples.
Indeed, by design we can identify the specific samples that allow the generation
of a given future trajectory. This in general is not possible with a neural network,
where knowledge is distilled in its weights during training. In our work, thanks
to the ESA controller, we improve the quality of the explanations. Thanks to the
sparsemax activation, each future feature fed to the decoder is a linear combina-
tion of a small but significant subset of memory elements. In fact, sparsemax allows
the model to generate sparse attentions over the memory. On the contrary, with
a softmax activation function, the attention would be smoother and identifying
individual sample responsibilities would be harder.

By using the sparsemax activation, we want there to be an evident cause-
effect relationship between what is read from memory and the generated out-
put. The quality of the explanation however depends on the architecture of the
prediction and in particular on what kind of information is stored in mem-
ory. In the following we show how predictions can be interpreted using the
MANTRA-M+ESA and MemoNet+ESA models. In Fig. 7 we show an exam-
ple from the Argoverse dataset, comparing the usage of sparsemax and softmax
in the MANTRA-M+ESA model. In the figure, we show attention over memory
cells, as well as past, future and semantic maps of the samples retrieved from
memory. For each prediction, we represent the attention as a heatmap, normal-
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Fig. 8. Normalized histograms of atten-
tion values, binned in 0.001-width inter-
vals (x-axis).

Table 5. Quantative analysis of atten-
tion values generated by the ESA con-
troller with softmax and sparsemax

Att. Values Softmax Sparsemax

>0 (%) 100% 2.37%

>0 (mean) 2328 55

Max 0.21 0.47

Mean 0.0004 0.0180

Fig. 9. Explainability for MemoNet+ESA. X-dots are attention-weighted memory
intentions associated with predictions of the same color.

ized by its maximum value. We also plot directly on the map all past and future
trajectories in memory, weighing their intensity with the respective normalized
attention value. In a similar way, we show a semantic heatmap generated by a
weighted sum of all maps. Interestingly, the predictions generated by the model
using the two activations are very similar. The substantial difference lies in which
memory samples are used to generate such predictions. With sparsemax, most
attention values are equal to 0 (blue lines in the attention heatmap). Maps and
trajectories corresponding to positive attentions can be interpreted as a scenario
consistent with the generated prediction. Instead, using softmax, we have a soft
attention vector and no element in memory is clearly identifiable as responsible
of the prediction. The semantic heatmaps appear similar for all the futures.

We can make a quantitative analysis of this behavior. In Table 5 we report the
average number of attention values greater than 0, the maximum attention value
and the average attention value. Using sparsemax, only 2.37% of the attention
values is positive with an average of 55 elements for each example. On the other
hand, with softmax, all memory attention values are positive, the maximum
attention value is halved and on average attention values are 45 times lower. This
demonstrates that sparsemax allows the model to focus only on relevant memory
elements, thus providing interpretable insights about the model’s behavior. The
same conclusion can be drawn by looking at Fig. 8. We show the normalized
histogram of attention values, binned in intervals of width 0.001. Attention values
with softmax concentrate close to 0, while with sparsemax are more spreaded.
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Fig. 10. When changing the observed map, the controller focuses on different memory
samples. Past trajectory is in blue, ground-truth in green and the predictions in red.
(Color figure online)

A similar analysis can be done for MemoNet+ESA, which stores intentions as
endpoint coordinates instead of future trajectories and maps. In Fig. 9, we show
for each prediction the intentions retrieved from memory, weighed by attention.
The final position of the generated trajectories is always in a neighborhood of
the intentions considered to be relevant by the ESA controller.

In addition, to verify the robustness of the model and its explainability,
we perform an ablation study on MANTRA-M+ESA. We manually perturb
the input and observe how this affects both the predictions and the explain-
ability. In particular, we change the feature of the semantic map, leaving the
past unchanged and observe which are the elements in memory that the model
focuses on. As we can observe in Fig. 10, different trajectories are generated
which are coherent with the new map. The ESA controller also focuses on mem-
ory instances that are related to the new semantic map.

6 Conclusions

We proposed ESA a novel reading controller based on explainable sparse atten-
tion for Memory-based Trajectory Predictors. Differently from the prior work,
ESA allows to generate predictions based on different combinations of the ele-
ments in memory, leading to better generalization and robustness. Furthermore,
thanks to the sparsemax activation function, it is possible to identify a small sub-
set of samples relevant to generate the output. We tested ESA on top of state
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of the art Memory-based Trajectory Predictors obtaining considerable improve-
ments and demonstrated the explainability of the predictions.
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