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Abstract—Pedestrians and drivers are expected to safely navigate complex urban environments along with several non cooperating

agents. Autonomous vehicles will soon replicate this capability. Each agent acquires a representation of the world from an egocentric

perspective and must make decisions ensuring safety for itself and others. This requires to predict motion patterns of observed agents

for a far enough future. In this paper we propose MANTRA, a model that exploits memory augmented networks to effectively predict

multiple trajectories of other agents, observed from an egocentric perspective. Our model stores observations in memory and uses

trained controllers to write meaningful pattern encodings and read trajectories that are most likely to occur in future. We show that our

method is able to natively perform multi-modal trajectory prediction obtaining state-of-the art results on four datasets. Moreover, thanks

to the non-parametric nature of the memory module, we show how once trained our system can continuously improve by ingesting

novel patterns.

Index Terms—Trajectory prediction, memory augmented networks, egocentric perception, autonomous driving

Ç

1 INTRODUCTION

SENSING the surrounding environment is a key ability for
reasoning. Humans are able to achieve this mostly

through visual perception and adapting what they see to a
representation of the world built through their own experi-
ence. Grounding what is perceived with experience, it is
possible for humans to recall previously seen episodes that
are likely to suggest state evolutions of other agents acting
in the environment. A simple example can be found in a
pedestrian about to cross the road: if a car is approaching, it
might stop to let him pass, keep moving in front of him or
even make a turn without crossing paths at all. Having
observed similar behaviors in the past, the pedestrian will
wait until a safe crossing scenario is foreseeable. Similarly,
other moving agents, such as cyclists and car drivers, must
apply this kind of predictive reasoning while driving.

When egocentric perception or the reasoning grounded
on such evidence falls short, tasks such as interacting with
other objects or people become difficult if not even danger-
ous, indoors and especially outdoors. In particular, to be
able to safely navigate an outdoor space, such as an urban
environment, it is necessary to sense its structure and
understand and predict the motion of surrounding agents
populating it. To this end, for visually impaired humans,
wearable devices are becoming a possible aid to correctly
perceive the surroundings and provide assistance for navi-
gation. If the navigating entity is not human, but instead an

intelligent agent such as a robot or an autonomous vehicle,
egocentric perception covers a pivotal role since all its
aspects must be explicitly modeled, from sensing to predic-
tion. In general, a moving agent, let it be human or artificial,
has to rely on egocentric perception to plan a safe navigation.

The problem of predicting trajectories of navigating agents
is deeply entwined with egocentric perception and has a cen-
tral importance in guaranteeing safety for both the observer
and the observed. Moreover, predicting future trajectories is a
problem with an inherently multimodal nature: the dynamics
of a moving agent, observed from an external point of view,
can yield a variety of similarly likely outcomes (Fig. 1). Being
able to predict where others will go, allows the observer to
take counter-actions or simply pay more attention to certain
elements populating the environment. Regardless of the
nature of the observer (a pedestrian, a cyclist, a person driving,
an autonomous vehicle) and the means of perception (the
human eye, smart helmets or wearable devices, on-vehicle ego
cameras), the problem can be cast as sensing others, represent
their motion in a reference system up to an instant identifiable
as present and infer their position in future time-steps.

As for perception, considerable steps forward have been
made in the past years for autonomous driving [1], [2], [3].
Vehicles are in fact equipped with a large array of sensors
(e.g., GPS, LiDAR, RGB cameras, stereo camera rigs) to build
a precise representation of what is observed from their point
of view. Yet, when inferring future positions of others, cur-
rent approaches still lack the ability of explicitly addressing
specific occurrences from experience. This is particularly
important to make accurate predictions and directly reflects
onto the ability of planning actions for safe navigation.

Humans can address this task by implicit learning, i.e.,
exploiting procedural memory (knowing how to do things)
from similar scenarios of previous experience, without
explicit and conscious awareness. For machines, instead, this
task is much harder. Common machine learning models,
such as the LSTM variant of Recurrent Neural Networks,
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have been applied with some success to predict trajectories
and produce probabilistic information about the future loca-
tions of vehicles [4], [5] or pedestrians [6], [7], [8]. LSTMs
have been capable of storing past information into a single
hidden representation, updated at every time step, and
make predictions based on long term patterns.

In this paper, we present MANTRA: a Memory Aug-
mented Neural TRAjectory predictor. In contrast to the solu-
tions referred above, MANTRA addresses vehicle trajectory
prediction by following a novel approach and implementing
a persistent Memory Augmented Neural Network (MANN)
[9]. In our model, an external, associative memory is trained
to write useful and non-redundant trajectories. Instead of a
single hidden representation addressable as a whole, our
memory is element-wise addressable and permits to selec-
tively access only relevant pieces of information at runtime.

The model incrementally creates a knowledge base that
is used as experience to perform meaningful predictions,
combining information from the past dynamics of the vehi-
cle and the environment in which it is moving. This mimics
the way in which implicit human memory works. Since the
knowledge base is built from trajectory samples, it can also
include instances observed while the system is running,
after it has been trained. In this way the model gains experi-
ence online, increasing its accuracy and capability to gener-
alize at no training cost.

Samples are stored in memory by separating past, future
and context information. In this way, at test time the actual
coordinates are obtained by decoding a future read from
memory, conditioned with the observed past and context.
Therefore, the output is not a simple copy of previously seen
examples, but is instead a newly generated trajectory
obtained from both the system experience (i.e., its memory)
and the observed instance. By reading multiple futures from
memory, diverse meaningful predictions can be obtained.
Themain contributions of this paper are the following:

� Wepropose a novel architecture formultiple trajectory
prediction of moving agents in urban environments

based on Memory Augmented Neural Networks. The
model is equipped with memory controllers for writ-
ing and reading only relevant samples. To the best of
our knowledge we are the first to adopt MANNs for
trajectory prediction.

� Our formulation, exploiting an encoder-decoder
pipeline augmented with an associative memory, is
easier to inspect and provides naturally multimodal
predictions, obtaining state-of-the-art results on four
traffic datasets.

� Our model is able to improve incrementally, after it
has been trained, when observing new examples
online. This trait is important for industrial automo-
tive applications and is currently lacking in other
state of the art predictors.

A preliminary version of our model was described in
[10]. The model presented in this work differs substantially
from [10] in several ways: (i) feature encoding now includes
context instead of just trajectories; (ii) feature decoding is
trained with a multi-task loss using a cross-entropy to
reconstruct semantic maps in addition to the MSE to recon-
struct future trajectories; (iii) memory keys are now made
by tuples of past and context; (iv) memory access is done
through a trainable reading controller. Furthermore, we use
an additional metric, taking into account all predictions,
without limiting the evaluation to the best-of-K. We also
provide a more comprehensive review of related works and
report an extended evaluation, including an additional new
and challenging dataset [11].

2 RELATED WORK

Egocentric Perception. A large variety of applications has
been studied in literature regarding egocentric perception:
assistance for visually impaired people [12], [13], lifelogging
[14], [15], [16], navigation [17], [18], [19], mixed reality [20],
[21]. Although the nature of these applications is different,
they all share the usage of a camera for capturing what an
agent observes. Typically, said agent is human and uses a

Fig. 1. MANTRA addresses multimodal trajectory prediction. We obtain multiple future predictions given an observed past and its context, relying on a
Memory Augmented Neural Network.
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wearable device to get assistance in everyday life or experi-
ence an augmented or mixed reality as entertainment. Ego-
centric perception, though, is not limited to humans, and
can focus on intelligent agents such as robots or autono-
mous cars. In particular, it has been playing a relevant role
in aiding navigating agents, e.g., humans with visual
impairment, robots or vehicles [22], [23], [24], [25]. This
stems from the need to accurately perceive the surrounding
environment and react accordingly. Two macro-areas can
be distinguished: indoor and outdoor navigation. Indoor
navigating agents must perceive objects and be able to inter-
act with them [17], [19], [26], [27], [28], [29], [30], [31]. In fact,
the final goal is usually to handle daily life activities, such as
cooking or washing dishes [32], which require to correctly
interact with several elements of the environment. Interac-
tion is not limited to objects and may also involve other
humans, especially during social [33], [34] or sport activities
[35]. A notable subfield of research is egocentric perception
for cultural heritage [36], [37], [38], where user interests and
behaviors are tracked to offer enhanced museum visits.

When focus shifts to outdoor navigation, such as urban
environments, egocentric perception has to be defined dif-
ferently. Whereas navigation in indoor settings is a mean to
an end (cooking, interacting with something/someone), the
goal of outdoor agents is more focused on navigation itself,
which needs to be performed safely without harming or
being harmed by other navigating agents (e.g., avoiding col-
lisions and complying with road traffic regulations) [18],
[39]. Interaction is still a matter of primary importance but
is now considered as the analysis of social patterns that
determine how groups move together in a shared space [6],
[7], [40]. At the same time, for urban navigation, agents
need to infer the layout of the scene, recovering possible
occlusions that they might have from their point of view
[41], [42]. A correct understanding of both context and other
agents is pivotal for safety, since it enables the anticipation
of dangerous situations such as car accidents [43]. Several
works have dealt with the problem of predicting future
agent locations, often focusing on ego-motion [23], [44],
[45]. In this paper, rather than focusing on ego-motion, we
are interested in the ability to look at other agents from an
egocentric point of view and forecast how they will act in
the near future.

Trajectory Prediction. Significant effort has been made in
the past years regarding trajectory prediction. Several
researchers have focused on trajectories of pedestrians [6],
[7], [46], [47], [48], either regarded as individuals or crowds,
also exploiting social behaviors and interactivity between
individuals [6], [7], [46], [47], [49], [50].

For vehicle trajectory prediction, the focus shifts on the
observation of motion of individual agents (their past trajec-
tory) and the understanding of the surrounding environ-
ment [11], [51], [52]. Traffic dynamics likely reduce to
simpler scenarios where movement is limited and con-
strained by the environment. Efforts have been made to
understand and predict vehicle trajectories in urban scenar-
ios [40], [51], [52], [53], [54], [55], [56], [57], [58], [59], also
taking into account social interactions. Although, from the
empirical evidence presented in [11], [51], the explicit
modeling of social interactions for vehicles was shown not
to provide valuable improvements in trajectory prediction.

A notable exception is estimating lane changes on high-
ways [60], [61].

Distinguished systems that provide multiple trajectory
prediction in complex environments are DESIRE[51] and
INFER[52]. DESIRE uses a Conditional Variational Autoen-
coder for estimating a distribution from which future trajec-
tories can be sampled. A large number of predictions is
needed to cover all the search space and Inverse Optimal
Control is then used to extract a final ranked subset. INFER
instead exploits a fully convolutional model that takes into
account intermediate semantic representations and gener-
ates multimodal heatmaps of possible future locations, then
looking for peaks of the distribution.

In our work, we address multiple trajectory prediction of
agents navigating in an urban scenario. Examples of urban
contexts where such multiple predictions may be necessary
are roundabouts and crossroads where vehicles might take
different, equally possible paths.

We train a Memory Augmented Neural Network model
to generate multimodal trajectories, which to the best of our
knowledge has never been used for this purpose. The usage
of MANNs has two main advantages: (i) multiple futures
can be read from memory for a given observation, making
the model compliant to the multimodal nature of the prob-
lem; (ii) by retrieving a likely future from memory we can
rely on an oracle that suggests what is going to happen in
the near future. Differently from prior work, our trajectory
prediction model is also capable of growing online, improv-
ing incrementally its performance from new observations
after it has been trained.

A conceptually similar research direction to ours is the
one of intention-based methods [54], [55], [56]. In these
works, some representative anchor information (such as tra-
jectories, actions or locations) are predefined and then used
to guide predictions after estimating a probability distribu-
tion over each candidate. In [54], predictions on human
agents are conditioned by the state of a robot agent, for
which a goal is given or estimated. The authors of [55] pro-
pose a model specialized on intersections that generates a
likelihood over 5 fixed map zones, which entail different
motion patterns (go straight, turn left, turn right, stop and
reach the middle of the intersection). These anchors though
are very coarse and tied to a single context. In [56], anchor
trajectories are created running k-means over training data
and then performing uniform random sampling to reduce
redundancy. To some extent, memory entries in our model
can be interpreted as anchors encoding physically plausible
futures instead of intentions. Differently from the described
approaches though, we perform estimates based on any
kind of past dynamics and road layout, without having to
choose a reference agent to condition predictions or restrict
the applicability to constrained scenarios. Moreover, the set
of samples that we write in memory is chosen in order to
explicitly take into account reconstruction error through a
learned controller, thus minimizing redundancy in a princi-
pled manner.

Memory Networks. Neural Networks with memory capabil-
ities have been introduced to solve several machine learning
problems which require to model a temporal dimension. The
most common models are Recurrent Neural Networks
(RNN) and their variants such as Long-Short TermMemories
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(LSTM) [62] and Gated Recurrent Units (GRU) [63]. How-
ever, in these models, memory is a single hidden state vector
that encodes all the temporal information. So memory is
addressable as a whole and they lack the ability to address
individual elements of knowledge, necessary to apply algo-
rithmic manipulation and rapid inference. Moreover, state to
state transition is unstructured and global. Being the state
updated at each time-step, eventually it fails to model very
long term dependencies. Finally, the number of parameters
is tied to the size of the hidden state. So, adding knowledge
from the external environment, necessarily implies increas-
ing the size of the state.

Recent works have proposed Memory Augmented Neu-
ral Networks, or simply Memory Networks, to overcome
the limitations of RNNs [9], [64], [65], [66], [67], [68], [69],
[70], [71]. The principal characteristic of these models is the
usage of a controller network with an external element-wise
addressable memory. This is used to store explicit informa-
tion and access selectively relevant items. The memory con-
troller is trained to dynamically manage memory content,
optimizing predictions. Differently from RNNs, state to
state transitions are obtained through read/write operations
and a set of independent states is maintained. An important
consideration is that in Memory Networks the number of
parameters is not tied to the size of the memory, i.e., increas-
ing the memory slots will not increase the number of
parameters.

While introduced recently, a number of applications of
these models have already appeared in literature. The first
embodiment of a Memory Network was proposed in Neural
Turing Machines (NTM) [9] to perform algorithmic tasks,
such as sorting or copying, which require sequential manip-
ulation steps. Thanks to a fully differentiable controller, the
model interacts with the memory through read/write oper-
ations. The architecture was later extended to perform one-
shot learning in [65]. Differently from NTM, they trained
the MANN to implement a Least Recently Used memory
access strategy to write into rarely used locations.

In [67], MANNs have been proved to be able to effec-
tively address Question Answering tasks, where the model
has to answer questions related to a series of sentences. In
[66], the same problem is solved with an End-to-End Mem-
ory Network with attention weights to shift importance
from one sentence to another. Recent approaches have pro-
posed a MANN to address the more complex problem of
Visual Question Answering [69], [70], training the MANN
to learn uncommon question-answer pairs. Online learning
has also been tackled using Memory Networks. Rebuffi
et al. [68] learn a classifier adding classes incrementally.
MANNs for object tracking have been proposed, where the
model is trained to memorize templates, which are updated
as the object is tracked [71].

All these MANNs rely on episodic memories. The system
learns to write and read frommemory, but the stored data is
limited only to the current set of observations (such as a list
of numbers to be sorted in [9] or a collection of sentences
for question answering in [67]). Differently from prior
work, we build a MANN with a memory that is not epi-
sodic. Instead, it acts like a persistent memory which stores
an experience of relevant data to perform accurate predic-
tions for any observation and not just for a restricted

episode or set of samples. The rationale behind this
approach is that instead of solving simple algorithmic tasks
as a Neural Turing Machine, we learn how to create a pool
of samples to be used for future trajectory predictions. The
proposed model learns to store in memory only what is
strictly needed to perform accurate predictions. Our usage
of MANN is close to [72], but differs substantially. While
they exploit the decoupling of embeddings to better fit data,
we leverage the disjoint representation to create multiple
outputs from a single input, leading to a fully multimodal
predictive capability of the overall system.

3 MODEL

We formulate the task of predicting trajectories of moving
agents as the problem of estimating P ðx̂F jxP ; cÞ, where x̂F

is the predicted future trajectory, xP is the observed trajec-
tory (or past) and c is a representation of the context (e.g.,
roads, sidewalks). The focus of our work lies on vehicles,
but also includes other moving agents such as cyclists and
pedestrians. We consider agent trajectories as a sequence of
2-dimensional spatial coordinates. The past xP is given by
its positions observed up to some reference point identified
as present. Similarly, the future xF is the sequence of posi-
tions in which it will find itself at the next time steps.

3.1 Memory Based Trajectory Prediction

Given a sample trajectory xi ¼ ½xi
P ;x

i
F �, let pi ¼ Pðxi

P Þ and
fi ¼ Fðxi

F Þ be two encoding functions that map the 2D
coordinates of past and future trajectories into two separate
latent representations. Similarly, let gi ¼ GðciÞ be an encod-
ing function that generates a latent vector representing the
top-view map ci of the surrounding context. Finally, let
CF ðpi; gi;fiÞ and CCðpi; gi;fiÞ be two decoding functions
that take as input a triplet of past, context and future encod-
ings. CF and CC respectively decode the input into the
future sub-trajectory xi

F and the context ci.
We define M ¼ fpi; gi; fig as an associative key-value

memory containing jMj triplets of past, context and future
encodings. Past and context tuples (pi; gi) act as keys to
access memory and future embeddings fi are the values.
When a new trajectory xk

P is observed, its encoding and con-
text encoding (pk; gkÞ are used as key to retrieve meaningful
samples from memory. Note that observed trajectories are
all considered to be past trajectories, since the future coun-
terpart is yet to be observed and is what we want to predict.
Memory addressing is performed by a reading controller
that transforms a memory key into a read probability P ðrÞi
for each stored sample. The controller is trained in order to
maximize the read probability for samples that exhibit simi-
lar past and context to the observed one.

According to these similarity scores, the future encodings
of the top-K elements fj are separately combined with the
encodings of the observed past pk and context gk. The novel
triplets of encodings are transformed into 2D coordinates
using the decoding function CF : x̂

j
F ¼ CF ðpk; gk;fjÞ, with

j ¼ 1; . . . ; K.
Note that pk and gk are fixed while fj varies depending

on the sample read from memory. Future encodings fj are
used to suggest possible outcomes based on the past obser-
vation. This strategy allows the model to look ahead into
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likely futures in order to predict the correct one. Since multi-
ple fj can be used independently, we can decode multiple
futures and obtain a multimodal prediction in case of uncer-
tainty (e.g., a bifurcation in the road). An overview of the
model is shown in Fig. 2.

3.2 Feature Representation Learning

The encoding-decoding functions P;G;F;CF ;CC are
trained jointly as an autoencoder, as shown in Fig. 3. The
encoders P and F learn to map past and future points into a
meaningful representation and the decoder CF learns to
reconstruct the future. To aid this process, we also include
knowledge about the context, represented as a top-view
semantic map. Instead of using just the future as input, we
condition the reconstruction process also with an encoding
of the past and the context. This is useful for two aspects.
First, we are able to train different encoders and therefore
learn meaningful representations for each component. We
need this in order to obtain separate representations for
both keys (past and context) and values (future) in memory.

Second, despite not explicitly constraining the decoding
process, we observe that the usage of both past and context
influences future reconstruction, depending on the size of
the autoencoder latent state, as discussed in more detail in
Section 5.3.

In general, this conditioned reconstruction of the future,
also allows to generate trajectories that differ from the ones

in memory and are not just a simple copy of already
observed samples. We observed that the model was not able
to represent contexts effectively, focusing just on the past
and future coordinates. To avoid this and be able to condi-
tion reconstructed futures also with top-view maps, we
added the auxiliary decoder CC that reconstructs the input
context ck. We use this decoder only for training effective
representations andwe ignore it in the rest of themodel.

3.3 Memory Writing Controller

Traditional Memory Augmented Neural Networks [9], [66],
[67] are designed to observe collections of data, usually
referred to as episodes. The models are equipped with a
working memory to store relevant information about the
episode in order to generate a meaningful output. Yet mem-
ory is cleared for each episode and what is trained is the
controller that decides what to read/write. The supervision
for training stems from the cost function at the end of the
episode, tracing gradients back to the controller.

As in standard memories, we train a controller to emit a
write probability P ðwÞ every time that a sample is observed,
but, differently from these approaches, we build a compact
and permanent memory.

Training such a controller might be challenging since
P ðwÞ does not depend only on the intrinsic importance of the
observed sample but also on the current state of thememory.
To solve this issue, we do not rely on the prediction loss for
supervision.We instead feed the reconstruction error e to the
controller, which decides if the network reconstruction was
sufficiently close to the ground truth. To enforce this behav-
ior we define thewriting controller lossLw as:

Lw ¼ e � ð1� P ðwÞÞ þ ð1� eÞ � P ðwÞ; (1)

where e is assumed to have values in ½0; 1�. When the error is
low, i.e., e ! 0, then

Lw � P ðwÞ; (2)

therefore the write probability is minimized.
Conversely, when e ! 1, then

Lw � 1� P ðwÞ; (3)

and the controller maximizes the write probability.

Fig. 2. Architecture of MANTRA. The encodings of an observed past trajectory and its contexts are used as key to read likely future encodings from
memory. A multimodal prediction is obtained by decoding each future encoding, conditioned by the observed past and the context.

Fig. 3. Representation learning: past, context and future are encoded
separately; a decoder reconstructs future trajectory and context.
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In this way the controller adaptively learns a threshold
on the reconstruction error, that allows to store in memory
only what is useful for predicting accurately, limiting
redundancy. If the model exhibits a large prediction error,
the controller writes the current sample with its ground
truth future encoding in memory. When this happens, it
indicates that the memory lacks samples to accurately
reconstruct the future, hence, by writing the sample in
memory, the model will improve its prediction capacity.
This behavior is ensured by the reconstruction capabilities
of the model. In fact we use a pretrained decoder CF that is
trained on the same samples used to populate the memory
(and will therefore have a small reconstruction error). With-
out a well trained decoder, the controller might risk to store
redundant samples without improving the overall predic-
tion capabilities of the system. More details on training and
memory population are provided in Section 3.5.

To satisfy the assumption of a bounded error function
with values in [0,1] for the writing controller loss of Eq. (1),
we introduce an adaptive miss rate error function with a
threshold depending on the timestep:

e ¼ 1� 1

N

XN

i¼1

1iðx̂F ;xF Þ; (4)

where 1iðx̂F ;xF Þ is an indicator function equal to 1 if the
ith point of the prediction x̂F lies within a threshold th
from the ground truth and 0 otherwise. We use a different
threshold for each timestep, allowing a given uncertainty
for the farthest point (4 seconds) and linearly decreasing
towards 0 for previous ones. Interestingly, we have
noticed that changing these thresholds affects memory
size, introducing redundancy when a small radius is used.
In our experiments, we use th4s equal to 2 meters, which
offers a good balance between memory size and prediction
error (Fig. 4).

Since the memory controller is learned exploiting recon-
struction errors, it stores embeddings corresponding to pre-
viously unseen futures. These are representations of both
frequent and rare trajectories. Keeping rare trajectories in an
element-wise addressable memory is desirable, as they are
necessary to predict similar instances that may happen
again in the future. However, in a real world scenario,
encodings of spurious trajectories due to the early percep-
tion modules may be written in memory (e.g., bad trajecto-
ries caused by detector or tracker failures). This could lead
to noisy future reconstructions. However, this negative
impact is mitigated by the fact that observed trajectories

pass through an encoding-decoding process before being
stored in the memory, which attenuates the effect of noise.

3.4 Memory Reading Controller

To access memory we use a reading controller. The reading
controller uses both the observed past trajectory and the
context ðpk; gkÞ as key and generates a read probability
P ðrÞi over each memory location i. An ablation study of
controller variants is reported in Section 5.1.

Our reading controller is based on cosine similarity
between the observed sample and memory keys. We first
compute a past read similarity sp and a context read similar-
ity sg as follows:

sip ¼ pk � pi

kpkkkpik i ¼ 0; . . . ; jMj (5)

sig ¼ gk � gi

kgkkkgik i ¼ 0; . . . ; jMj: (6)

We then feed sip and sig to a multilayer feed-forward neural
network F that blends the read similarities, weighing past
and context importance and is trained to output high scores
for relevant samples and low scores for the others. The final
read probability is therefore obtained by:

P ðrÞi ¼ F ðsip; sigÞ: (7)

Since each memory sample can be read and decoded inde-
pendently, to obtain multimodality, we simply read the top-
K samples with the highest P ðrÞi at inference time.

3.5 Training

We train our model to observe 2 seconds trajectories
and predict up to 4 seconds in the future. To achieve
translation and rotation invariance, each trajectory is nor-
malized by shifting the present in the origin and rotating
the trajectory in order to make it tangent with the Y-axis
in the origin. In this way all futures start from (0, 0) in an
upward direction.

First, a pretraining of both the encoders and the decoders
is done jointly as an autoencoder. To do so, we feed triplets
comprising past trajectories xP , future trajectories xF and
their context c, all belonging to the same observation. The
context is a semantic top-view map of 120px� 120px which
covers an area of 60� 60 meters in front of the moving
agent. The decoders reconstruct only future coordinates
and the semantic map.

We then train the memory controllers, exploiting the
learned past encoder and future decoder. The trained writ-
ing controller allows the memory to be filled with useful
and non-redundant training samples by iterating over the
training set and measuring reconstruction errors. While in
principle the order in which samples are presented to the
memory for writing may result in different final content, in
our experiments we found that this does not affect the final
prediction. During training, we reset the memory after each
epoch until convergence.

The reading controller is trained to output a read proba-
bility for memory samples. For each training sample to be
predicted, we select a memory subset taking the top-K

Fig. 4. The writing controller estimates a bounded trajectory error as an
adaptive miss-rate. For further timesteps an increasingly higher error is
tolerated.
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elements with the highest similarity according to the past. In
fact, past is a stronger cue than context for reconstructing
plausible trajectories, as will be shown in Section 5.1. In
our experiments, we set K ¼ 20 for training the reading
controller, in order to obtain a set of diverse samples that
have similar dynamics with the observed one. Some of these
trajectories will likely go off road since context is not
observed yet. We identify the best and worst candidate in
the set by decoding and comparing their reconstructions to
the ground truth. We then use these memory elements as
training samples for the controller: we train the reading con-
troller F with a binary cross-entropy, assigning a positive
label to the best candidate and a negative label to the worst
one. The architecture of the reading controller is a simple
Multi-Layer Perceptron (MLP) with two layers, separated
by a ReLU activation. The controller takes two inputs (past
and context similarities), projects them in a 4-dimensional
space with the first layer of the MLP and then blends them
into a single output. This allows us to obtain a simple non-
linear fusion of past and context similarities which is
learned from the data. The effect of this learning process,
which adapts to different datasets, is shown in Section 5.1.
To populate the final memory, we use the controllers to
store a non-redundant set of samples by iterating for an
epoch on the training set.

The trajectory encoders and decoder are implemented as
Gated Recurrent Units with a 48-dimensional hidden state
for each encoder and 96-dimensional for the decoder. The
trajectories are first processed with a 1D convolution with
16 filters before being fed to the recurrent layer of the
encoder. In the decoder instead, after the GRU, a fully con-
nected layer generates spatial displacements to obtain the
future reconstruction.

The context encoder is a Convolutional Neural Network
composed as follows: a convolutional layer with 4 filters
3� 3 with stride 2 and padding 1; a max pooling layer
which halves the feature map size; a second convolutional
layer with 8 filters 3� 3 with stride 2 and padding 1 which
generates a 15� 15� 8 feature map; a fully connected layer
which condenses the representation into a 48-dimensional
vector. Each convolutional layer has batch normalization
and ReLU activation. The latent feature of the autoencoder
is obtained by concatenating the three representations p, g,
f of past, context and future, and is therefore 48� 3 ¼ 144
dimensional. The first two components of the latent vector
correspond to what is going to be stored in memory as key
(past and context) and the last one (future) as value. To
encourage the autoencoder to exploit information from all
three inputs, we apply dropout with a 0.5 rate on the latent
vector during training.

The context decoder, used for training the autoencoder is
made by an initial fully connected layer which generates a
225 vector then reshaped into a 15� 15 map. We upsample
it with 3 transposed convolutional layers with stride 2, pad-
ding 1 and ReLU activation, that yields a 120� 120 output,
which has the same size of the original context.

We optimize Lw defined in Eq. (1) to train the writing
controller, a Mean Squared Error loss for the decoder and a
cross-entropy loss for the context decoder and the reading
controller. All components are trained with the Adam opti-
mizer using a learning rate of 0.0001.

4 EXPERIMENTS

MANTRA produces multiple trajectory predictions of
nearby moving agents. While these are observed from an
egocentric perspective, contextual elements such as road
layout in the observer neighborhood are also considered to
predict more accurately. Given 2 seconds observations,
MANTRA is capable of predicting 4 seconds ahead in the
future, providing the capability of reacting appropriately.
This capability can be used both for pedestrians and people
driving bicycles, motorcars or cars, as well as for autono-
mous vehicles. For the large set of cases considered, and the
variety of traffic conditions covered, in the experiments we
used datasets designed for trajectory prediction of vehicles
in an autonomous driving context: KITTI [73], Argoverse
[11], Oxford RobotCar [74] and Cityscapes [75].

4.1 Datasets

KITTI [73] The dataset includes a large variety of annotations
such as Velodyne LiDAR 3D scans, object bounding boxes
and tracks, calibration, depth and IMU data. Not all data is
always present for every video so we used the ones catego-
rized as KITTI Raw Data, following the split of DESIRE [51].
Although the split is known, how to divide trajectories in
data chunks is not. To obtain samples we collect 6 seconds
chunks (2 seconds for past and 4 for future) in a sliding win-
dow fashion from all trajectories in the dataset, including the
ego-vehicle. We obtain 8613 top-view trajectories for training
and 2907 for testing. Note that these numbers are different
from the original DESIRE split since they claim to gather
2509 trajectories in total. To favor reproducibility and future
comparison we will publicly release our version of the data-
set upon publication. Since top-view maps are not provided
by KITTI, we project semantic labels of static categories
obtained with DeepLab-v3+ [76] from all frames in a com-
mon top-view map using the Velodyne 3D point cloud
and IMU. The resulting maps have a spatial resolution of
0.5meters, andwill be released alongwith the trajectories.

Another smaller version of the KITTI dataset for trajec-
tory prediction has been recently proposed by [52] and is
publicly available. The authors propose 5 different train/
test splits and average results over all runs, so we follow
this evaluation protocol. We report experiments on both
variants of KITTI. In the following, we refer to KITTI as our
split obtained following DESIRE, unless expressly stated
otherwise.

Argoverse [11]. This dataset provides data for two differ-
ent tasks, 3D tracking and motion forecasting. Vehicle tra-
jectories are collected in top-view in the cities of Pittsburgh
and Miami, covering an area of more than 1000km2. In total,
there are approximately 325k annotated trajectories, gath-
ered from over 1000 hours of video. Maps are also available
with lane centerlines, traffic direction, ground height and
drivable areas. Trajectories are all divided into 5 seconds
long chunks (2 seconds for past and 3 for future). The data-
set is split into train, validation and test. We report results
on the validation set v1.1, for which ground truth data is
publicly available. Argoverse has a much larger scale com-
pared to KITTI and exhibits more diversity in trajectory pat-
terns, proving to be a suitable and challenging benchmark
on which to evaluate trajectory prediction methods.
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Oxford RobotCar [74] and Cityscapes [75]. The two datasets
RobotCar and Cityscapes have been adapted for trajectory
prediction in [52] to show zero-shot transfer capabilities on
different domains. Of particular interest is the ability to
transfer to RobotCar since the sequences are acquired in the
UK where cars drive on the left-side of the road. RobotCar
has 6 seconds trajectories divided into 2 seconds for past
and 4 for future. Cityscapes instead has shorter videos and
predictions are made only up to one second in the future, as
done in [52].

4.2 Evaluation Metrics and Baselines

We report results in two common metrics for vehicle trajec-
tory prediction: Average Displacement Error (ADE) and Final
Displacement Error (FDE), where ADE is the average L2 error
between all future timesteps and FDE (sometimes referred
to as Horizon error) is the error at a given timestep. As

in [51], [52] we take the best out of K predictions to account
for the intrinsic multimodality of the task. We compare our
approach with several baselines: a linear coordinate regres-
sor (Linear); a Multi-Layer Perceptron with two layers
trained as a coordinate regressor (MLP); a Kalman filter [77],
with a constant speed model used to propagate the estimate
without incorporating measures (Kalman). We implemented
and tested the baselines on KITTI and Argoverse to show
comparable results. When available we also report existing
baselines from the literature.

4.3 Results

Table 1 shows the results on the KITTI dataset. Simply prop-
agating the trajectory with a Kalman filter proves to be
insufficient to accurately predict future positions, especially
over long time spans, with an FDE@4s higher than 7m.
Learning based baselines all perform better than the Kal-
man filter, with the MLP performing slightly better than the
linear regressor.

Models that generate a single prediction fail to address
the multimodality of the task, since they are trained to lower
the error with a single output, even when there might be
multiple equally likely desired outcomes. What may hap-
pen is that in front of a bifurcation, the model predicts an
average of the two possible trajectories, trying to satisfy
both scenarios. Examples of this behavior are shown in
Fig. 5. Each prediction of MANTRA instead follows a spe-
cific path, ignoring the others. This leads to high errors on
some examples when generating only one future, since the
model may decide to follow a different likely path. On the
other hand as soon as we generate K multiple predictions,
the top-K error drastically decreases since we are able to
cover diverse future paths. We also report results from
DESIRE [51] varying K. Even though these results are
not directly comparable as explained in Section 4.1, it is

TABLE 1
Results on the KITTI Dataset

ADE FDE

Method 1s 2s 3s 4s 1s 2s 3s 4s

Kalman 0.51 1.14 1.99 3.03 0.97 2.54 4.71 7.41
Linear 0.20 0.49 0.96 1.64 0.40 1.18 2.56 4.73
MLP 0.20 0.49 0.93 1.53 0.40 1.17 2.39 4.12
MANTRA (top 1) 0.25 0.59 1.04 1.79 0.49 1.40 2.81 4.70
MANTRA (top 5) 0.17 0.38 0.67 1.06 0.32 0.83 1.63 2.79
MANTRA (top 10) 0.16 0.30 0.48 0.74 0.27 0.60 1.09 1.91
MANTRA (top 20) 0.16 0.28 0.43 0.63 0.26 0.53 0.90 1.60

DESIRE (top 1) [51] - - - - 0.51 1.44 2.76 4.45
DESIRE (top 5) [51]) - - - - 0.28 0.67 1.22 2.06
DESIRE (top 20) [51]) - - - - - - - 2.04

Results obtained by DESIRE are given as reference even if not comparable, due
to the data collection process.

Fig. 5. MANTRA compared to Linear regression (a) and Kalman filter (b). Methods (a),(b) lack multi-modal capability. Past trajectories are depicted in
blue, ground truth in green and future predictions are cyan (a), purple (b) and red (c). In (c) highly ranked are darker. The first two rows show samples
from the KITTI dataset, while the other two from Argoverse.
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interesting to observe how DESIRE does not report signifi-
cant improvements when increasing K from 5 to 20, while
our method reduces the error significantly. This suggests
that MANTRA samples a higher diversity of futures both at
a coarse level (i.e., taking one road or another) and at a fine
level (i.e., taking different behaviors on the same road).

Additionally, we evaluate MANTRA on the KITTI split
proposed in [52], as shown in Table 2. Here we also report
some available baselines from the state of the art, both for
single and multimodal predictions. With K ¼ 1 our method
performs better or on par with INFER [52] at low timesteps,
yet losing some precision at 4s. Increasing K instead we are
able to largely outperform INFER over all timesteps.

A similar analysis is obtained when we move to a more
recent and larger scale dataset: Argoverse. Differently from
KITTI, the standard evaluation observes 2 seconds in the
past and predicts up to 3 seconds in the future, using K = 6
predictions to demonstrate multimodality. Results are
shown in Table 3. Along with the Kalman, Linear and MLP
baselines, we report results from the state of the art [11],
[57], obtaining better results especially for 3 seconds predic-
tions. Some qualitative results on KITTI and Argoverse are
shown in Fig. 5, comparing them with the baselines.

Interestingly, our model does not include social interac-
tion modeling as [11], [51], [52]. Although the presence of

other agents in the surrounding context is an influencing var-
iable, in our setting, the observation time span is sufficiently
large for a vehicle to adapt its motion to what is perceived
and prepare a reaction. This is true for social interactions
(avoiding dynamic obstacles) as well as compliance with the
environment (avoiding static obstacles). We believe that an
observed past trajectory, incorporates to some extent these
reactions reflecting also into the future prediction.

Following [52], we also showcase the ability of our model
to zero-shot transfer from KITTI to other datasets, namely
Oxford RobotCar and Cityscapes. We first train our model
on KITTI and then we keep our memory frozen, without
any additional training or finetuning. Results are shown in
Tables 4 and 5. On Oxford RobotCar, MANTRA is still able
to provide satisfactory results, consistently outperforming
INFER across timesteps for multimodal predictions. Analo-
gously, on Cityscapes the model obtains a lower error than
the other methods. Here we report only errors at 1s in the
future, which is the maximum length of the trajectories in
the dataset. Note that top-view semantic maps are not avail-
able for these two datasets, therefore we use a memory con-
troller that relies solely on past embeddings via cosine
distance.

4.4 Incremental Setting

Differently from prior work on trajectory prediction, MAN-
TRA is able to improve its capabilities online, i.e., observing
other agents’ behaviors while driving. We simulate an
online scenario on KITTI, iteratively removing N samples
from the test set and feeding them to the memory writing
controller without retraining the encoder. In this way, the

TABLE 2
Results on the KITTI Dataset (INFER Split)

ADE FDE

Method 1s 2s 3s 4s 1s 2s 3s 4s

Kalman 0.33 0.54 0.93 1.4 0.46 1.18 2.18 3.32

Linear 0.31 0.56 0.89 1.28 0.47 1.13 1.94 2.87

MLP 0.30 0.54 0.88 1.28 0.46 1.12 1.94 2.88

RNN Enc-Dec [78] 0.68 1.94 3.20 4.46 - - - -

Markov [52] 0.70 1.41 2.12 2.99 - - - -

Conv-LSTM (top 5) [52] 0.76 1.23 1.60 1.96 - - - -

INFER (top 1) [52] 0.75 0.95 1.13 1.42 1.01 1.26 1.76 2.67

INFER (top 5) [52] 0.56 0.75 0.93 1.22 0.81 1.08 1.55 2.46

MANTRA (top 1) 0.37 0.67 1.07 1.55 0.60 1.33 2.32 3.50

MANTRA (top 5) 0.33 0.48 0.66 0.90 0.45 0.78 1.22 2.03

MANTRA (top 10) 0.31 0.43 0.57 0.78 0.43 0.67 1.04 1.78

MANTRA (top 20) 0.29 0.41 0.55 0.74 0.41 0.64 1.00 1.68

TABLE 3
Results on the Argoverse Dataset

ADE FDE

Method 1s 3s 1s 3s

Kalman (top 1) 0.72 2.70 1.29 6.56
Linear (top 1) 0.58 1.95 0.98 4.58
MLP (top 1) 0.53 1.68 0.87 3.90
NN [11] (top 1) 0.75 2.46 1.28 5.60
NN + map [11] (top 6) 0.72 2.28 1.33 4.80
LSTM ED [11] (top 1) 0.68 2.27 1.78 5.19
LSTM ED + map [11] (top 6) 0.80 2.25 1.35 4.67
MFP [57] (top 6) - 1.39 - -
MANTRA (top 1) 0.72 2.36 1.25 5.31
MANTRA (top 6) 0.56 1.22 0.84 2.30
MANTRA (top 10) 0.53 1.00 0.77 1.69
MANTRA (top 20) 0.52 0.84 0.73 1.16

TABLE 4
Zero-Shot Transfer Evaluation on the Oxford RobotCar Dataset

ADE FDE

Method 1s 2s 3s 4s 1s 2s 3s 4s

INFER (top 1) [52] 1.06 1.35 1.48 1.68 1.31 1.71 1.70 2.56
INFER (top 5) [52] 0.85 1.14 1.29 1.50 1.18 1.58 1.58 2.41
MANTRA (top 1) 0.55 0.77 1.01 1.30 0.60 1.15 1.82 2.63
MANTRA (top 5) 0.55 0.68 0.82 1.03 0.58 0.88 1.37 2.07
MANTRA (top 10) 0.44 0.56 0.72 0.94 0.48 0.73 1.33 1.98
MANTRA (top 20) 0.31 0.43 0.59 0.83 0.35 0.61 1.24 1.96

MANTRA was trained on KITTI and evaluated on Oxford RobotCar.

TABLE 5
Zero-Shot Transfer Evaluation on the Cityscapes

Dataset at 1s in the Future

Method ADE FDE

Conv-LSTM (top 1) [52] 1.50 -
Conv-LSTM (top 3) [52] 1.36 -
Conv-LSTM (top 5) [52] 1.28 -
INFER (top 1) [52] 1.11 1.59
INFER (top 3) [52] 0.99 1.45
INFER (top 5) [52] 0.91 1.38
MANTRA (top 1) 0.81 1.42
MANTRA (top 3) 0.66 1.15
MANTRA (top 5) 0.60 1.00
MANTRA (top 10) 0.54 0.86
MANTRA (top 20) 0.49 0.79

MANTRA was trained on KITTI and evaluated on Cityscapes.
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controller can write in memory novel useful samples
according to P ðwÞ. After every new batch of samples, we
evaluate the model on the remaining trajectories in the test
set, until the test set has been completely observed. We start
from a pre-trained memory of approximately 250 samples,
belonging to the training set of KITTI.

In Fig. 6, memory growth and test error are shown for
K = 5 multiple futures. Similar behaviors can be observed
varying K. We plot memory size and prediction error after
having observed every new batch of N samples. We use
N = 50 and we indicate in the plots the percentage of
observed samples in the test set, which is composed of 2907
trajectories. Memory size is measured as the number of sam-
ples in memory. Interestingly, memory size grows slowly
while the error keeps decreasing. The memory controller
stores only 16 percent of the newly seen examples. Since the
error variance increases when the test set size decreases, we
average results over 100 runs, randomizing the test set.

5 MODEL ANALYSIS

In the following, we analyze the model under several
aspects. First, we perform ablation studies to highlight the
importance of distinct components. Then, we investigate
what samples the model writes in memory and how it
decodes them. Finally, we report the execution time for dif-
ferent memory sizes.

5.1 Ablation Studies

We investigate several modifications of MANTRA, report-
ing results in Table 6 on Argoverse. We test the following

variations: (i) with a reading controller based on cosine sim-
ilarity with the past; (ii) with a reading controller based on
cosine similarity with the context; (iii) without decoder, i.e.,
reading from memory using encodings but just copying the
correspondent future coordinates; (iv) without rotation
invariance, i.e., using trajectories with random rotations.

First, we discuss the importance of the memory reading
controller introduced in Section 3.4. which weighs past and
context importance to decode relevant samples from mem-
ory. In principle the reading controller can be any function
that manipulates either of the two inputs. Note that the
reading controller reflects also on memory size, since sam-
ples are stored based on reconstruction error.

At a first look, it appears that the past-based controller
(Controller Past) performs on par with the learned control-
ler (Full), with the context-based approach achieving far
worse results, both in terms of reconstruction error and
memory size. While basing decisions only on context will
obviously not lead to meaningful reconstructions (Control-
ler Context), we observed that the best-of-K metrics ADE
and FDE do not point out the substantial differences
between the other two controllers. It appears that often past
information alone is sufficient to generate a good prediction,
since the dynamics of the agent pose a strong constraint
over future outcomes. However, it might happen that sev-
eral trajectories are predicted off-road, thus not being com-
patible with the road layout. Using best-of-K metrics does
not allow to detect such cases. To overcome this limitation,
for each observation we take into account all the K predic-
tions and measure the off-road percentage. We consider a
prediction as off-road when at least one predicted coordi-
nate lays outside the road. Similar metrics have been
adopted in prior work [59], [79] to assess the violation of
environmental constraints posed by obstacles or lanes.

It appears that taking context into account along with the
past, lowers this percentage considerably (Full), resulting in
a set of trajectories that satisfy both the dynamics of the past
and the surrounding environment (Fig. 7). Interestingly, we
found that even when predicting a large number of futures,
the off-road percentage stays low with the learned reading
controller (e.g., 3.8 percent with K=20). The capacity to learn
even a simple nonlinear function to blend past and context
information allows the controller to adapt to the data it is
trained on. In fact, we observe two different behaviors on
KITTI and Argoverse, as shown in Fig. 8. On KITTI, the con-
troller focuses more on the past, discarding context informa-
tion when past similarity is low. On Argoverse, the higher

Fig. 6. Incremental setting. The model observes batches of test samples online, that are used as training data, and is evaluated on the remaining por-
tion of the test set. Mean and variance of memory size (left) and prediction error (right), averaged over 100 runs, are shown. On the x-axis we report
the percentage of test samples incrementally observed.

TABLE 6
Ablation Study of MANTRA on Argoverse

ADE FDE

Method 1s 3s 1s 4s Off-Road (%) Memory Size

MANTRA

(Full)

0.56 1.22 0.84 2.30 3.15 6397 (3.1 %)

MANTRA

(Controller Past)

0.52 1.22 0.79 2.38 8.14 6242 (2.9 %)

MANTRA

(Controller Context)

0.73 1.87 1.19 3.70 3.08 21992 (10.5 %)

MANTRA w/o dec. 0.80 1.47 1.12 2.44 6.01 6397 (3.1 %)

MANTRA w/o rot. inv. 1.11 2.54 1.80 4.63 40.26 75674 (36.3 %)

Errors are at K = 6. Memory size is shown as number of samples and % of the
training set.
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complexity of contexts reflects on the weights learned by the
controller, and context is taken more into account even
when the past is very dissimilar.

Removing the decoder from the model, instead, leads to
worse results and also doubles the percentage of off-road
predictions. What appears to be of great importance is
data normalization, since when we remove rotation invari-
ance the model does not manage to achieve a good recon-
struction error, which leads to a 10� bigger memory and a
40 percent rate of off-road predictions.

5.2 Memory Inspection

To better understand what the model is learning, we inspect
what is stored in memory by the controller. We take each
sample and plot its decoded future to depict a snapshot of
the memory. In Fig. 9 all samples from a memory filled on
the KITTI dataset for K = 5 predictions are shown.

In Fig. 10 we plot t-SNE projections [80] of past and
future encodings stored in memory, as points. On the left
we plot past embeddings, while on the right we report
future embeddings. For each projected sample we also
show the future trajectories generated by the decoder, dis-
played starting from the t-SNE points. All the trajectories
in the image have an upward trend due to the rotation
invariance. It can be seen that similar trajectories are clus-
tered together, indicating that the encoders are learning a
manifold where samples with similar patterns are close.

Interestingly, observing the t-SNE of past encodings, the
multimodal nature of the problem emerges. In fact, the
space appears to be organized mostly by trajectory speed
and for each point several possible future directions are
present. When trajectories have lower speed, futures are
free to span over many possible directions, while when tra-
jectories have higher speed, the futures vary more in
length rather than curvature.

5.3 Decoder Analysis

Here we inspect the behavior of the decoder and the influ-
ence that different pasts and contexts have on future recon-
structions. Encoder and decoder are jointly trained, but
differently from standard autoencoders, only part of the
input is reconstructed, i.e., the future. Past and context,

Fig. 7. Difference between reading controllers. Past is important to correctly model trajectory dynamics; context is relevant for making predictions that
are feasible with the road layout. Past trajectories are blue, ground truth green and future predictions red (highly ranked are darker).

Fig. 8. Reading controller scores varying past and context similarities.
Different blending functions are learned for different datasets, privileging
the past on KITTI and increasing the relevance of context on Argoverse.

Fig. 9. Decoded trajectories from memory.

Fig. 10. t-SNE representations of past (left) and future (right) encodings
stored in memory. Each point in the embedding space is shown along
with the decoded trajectory. Trajectories are color coded by orientation
(green tones) and speed (red tones).
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though, have the important role of conditioning the recon-
struction so that we can generalize to unseen examples.
First, we examine the influence of the past.

In Fig. 11 we show several reconstructions of the same
future, changing only the past encoding and keeping fixed
the future one. The reconstructions of the original past
yields a precise reconstruction. By changing the past by
shortening it or stretching it, i.e., changing the velocity, the
reconstruction gets accelerated or decelerated, affecting its
curvature. As a control experiment we also use a vector of
zeros or a random embedding. In both cases the generated
trajectories are very imprecise but still follow approximately
the original trend.

Similarly, we test the influence of different contexts on
future reconstruction. In Fig. 12 we show multiple recon-
structions varying only the context representation. It can be
seen that using a map with a different layout, such as a
straight road instead of a curve, the prediction is affected
and shifted to follow the road. When the model is blinded,
i.e., when the context embedding is replaced with a vector
of zeros, the reconstruction is still accurate, even if slightly
less precise. Feeding to the decoder a random vector
instead, leads to noisy outcomes. These tests justify using
the decoder feeding a combination of encodings belonging
to different samples, as we do at test time. In fact the gener-
ated trajectories are new compared to the samples in mem-
ory and they adapt to the current observation.

The degree of past and context influence on future recon-
struction depends on the size of the autoencoder latent
state. In fact, models with a large sized encoding learn to
pass the input directly to the output. Conversely, a reduced
sized encoding forces the decoder to rely on information
encoded in the past and context to reconstruct the output
signal. To verify this, we perform a control experiment by

training different autoencoders with different future
embedding sizes jfj. Similarly to the previous experiments,
we swap past and context with a different sample to
observe how these influence the reconstruction. In Fig. 13
we show an example of the reconstructed future using
jfj ¼ 24; 48; 72. When the embedding size is small, the new
context and past have a considerable influence on the recon-
struction, shifting the future towards the lane. With a large
embedding, however, the decoder reconstructs the original
future, disregarding past and context entirely. We have
observed this behavior consistently over different samples.

5.4 Execution Time Analysis

Since automotive applications are time-critical, in this para-
graph we discuss the execution time of MANTRA. Model
inference can be broken down into different steps: encoding,
memory access and decoding. Encoding has a fixed cost, while
decoding depends on K. However, the effect of K is negligible
thanks to GPU parallel execution. Memory access, instead, has
a linear dependency on the number of samples in memory.
We measure the inference time of MANTRA on Argoverse,
using a memory with 6397 entries as in the experiments in
Table 3 and K=6 as in the evaluation protocol. To simulate a
scenariowithmultiple agents, we predict futures for a batch of
5 different vehicles simultaneously. On an Nvidia Titan RTX
GPU, the total inference time, averaged over 100 runs, is of
15.37ms. Fig. 14 (left) shows the timing breakdown, highlight-
ing that the most expensive stage is decoding. This is due to
the fact thatwedecode autoregressively for 30 timesteps (3 sec-
onds), which is less efficient than directly generating thewhole
trajectory. However, the model is still capable of running in
real-time at approximately 65Hz. In Fig. 14 (right), we show
inference times as a function of memory size. It can be noticed
that memory access time increases linearly, up to 15ms with
one million stored samples. Morever, in case of very large
memories, fast access techniques could be employed [81]. We
conclude that in a real-time system, the main computational

Fig. 11. Influence of past in the decoder. (a) observed past; (b) slower
past; (c) faster past; (d) past embedding zeroed; (e) multiple randomized
past embeddings. Blue: Past trajectory. Red: Future reconstruction.
Green: Original future.

Fig. 12. Influence of context in the decoder. (a) original context; (b) differ-
ent context; (c) context embedding zeroed; (e) multiple randomized con-
text embeddings. Blue: past trajectory used for decoding. Red: future
reconstruction. Green: Original future.

Fig. 13. Decoding is affected by the embedding size jfj when changing
past and context. With a small embedding, the reconstruction adapts
more to past and context, while they are ignored with large embeddings.
Blue: Past trajectory. Red: Future reconstruction. Green: Original future.

Fig. 14. Inference time. Left: Breakdown of timings on Argoverse (mem-
ory size 6397) with K = 6 futures. Right: Inference time dependency from
number of samples in memory is linear (log x axis).
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bottleneckwould likely be given by the detection and segmen-
tation pipelines used to extract trajectories and semantic labels.

6 CONCLUSIONS AND FUTURE WORK

In this paper we have presented MANTRA, a novel frame-
work exploiting a Memory Augmented Network for multi-
ple trajectory prediction of moving agents, observed from
an ego-centric point of view. The memory module is used to
store encodings of past, context and future observations
and is central to the model prediction capabilities. Two
memory controllers are trained respectively to write a com-
pact set of samples relevant for the task and to read the
most appropriate ones, considering both the past trajectory
and the surrounding road layout. The experiments pre-
sented on four public datasets, show that MANTRA
achieves state of the art performance. The presented method
also performs well in zero-shot transfer to unseen datasets
and is able to improve incrementally online.

Currently, this work has focused on predicting trajecto-
ries of multiple moving agents. Future work will address
agent interactions, extending MANTRA by adding an epi-
sodic memory along with the persistent one, to reason on
social behaviors of the surrounding agents. Another aspect
which we plan on improving is the online learning capabil-
ity. Now, we are incrementally expanding MANTRA’s
memory after having trained the model. We believe that an
end-to-end solution capable of updating the weights of the
model at runtime would be an interesting development.
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