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Abstract—In this paper we present an event aggregation
strategy to convert the output of an event camera into frames
processable by traditional Computer Vision algorithms. The
proposed method first generates sequences of intermediate binary
representations, which are then losslessly transformed into a
compact format by simply applying a binary-to-decimal conver-
sion. This strategy allows us to encode temporal information
directly into pixel values, which are then interpreted by deep
learning models. We apply our strategy, called Temporal Binary
Representation, to the task of Gesture Recognition, obtaining
state of the art results on the popular DVS128 Gesture Dataset.
To underline the effectiveness of the proposed method compared
to existing ones, we also collect an extension of the dataset under
more challenging conditions on which to perform experiments.

I. INTRODUCTION

Action Recognition has gained increasing importance in re-
cent years, due to applications in several fields of research such
as surveillance, human computer interaction, healthcare and
automotive. Despite the significant steps forward made since
the diffusion of deep learning, there are still challenges yet to
be solved. Certain applications, for instance, have extremely
high time constraints. This is the case when recognition must
be performed from fast moving vehicles (e.g. drones or cars),
or when the pattern to be recognized is extremely fast (e.g.
eye glimpses). Indeed, standard RGB cameras might even fail
to capture a rich enough signal to enable recognition due to
low frame-rates and motion blur.

These limitations of RGB cameras have been addressed
with event cameras. Event cameras, also known as neuromor-
phic cameras, are sensors that capture illumination changes,
producing asynchronous events independently for each pixel.
These sensors have several desirable properties such as high
dynamic range, low latency, low power consumption, absence
of motion blur and, last but not least, they operate at extremely
high frequencies, generating events at a µs temporal scale. The
output of an event camera therefore is highly different from
the one of a regular RGB camera, making the applicability of
computer vision algorithms not so straightforward. In partic-
ular, Deep Learning methods such as Convolutional Neural
Networks (CNN), work with frames of synchronous data.
Asynchronous events need to be aggregated into synchronous
frames to be fed to a CNN.

Several event aggregation strategies have been proposed in
literature, allowing the usage of frame-based algorithms [1],
[2], [3], [4], [5]. These techniques however approximate the

signal by quantizing time into aggregation intervals, yielding
to a loss of information. The aggregation time can be lowered
to limit this phenomena, but this will result in an extremely
high number of frames to be processed, making real-time
analysis prohibitive.

In this paper we present an event aggregation strategy
named Temporal Binary Representation (TBR). Compared to
existing strategies, TBR generates compact representations
without losing information up to an arbitrarily small quan-
tization time. In fact, we first aggregate events to generate
intermediate binary representations with small quantization
times and then losslessly combine sequences of intermediate
representations into a single frame. This allows us to lower the
amount of data to be processed while retaining information
at fine temporal scales. TBR is specifically tailored for fast
moving actions or gestures and can be directly used for
training and evaluating standard CNNs. Indeed, we exploit
two models based on Alexnet+LSTM and Inception 3D for
action recognition, reporting state of the art results on the IBM
DVS128 Gesture Dataset [6]. Furthermore, we highlight the
benefits of the proposed strategy by collecting an extension
of the dataset in more challenging scenarios, namely higher
execution speed, multiple scales, camera pose and background
clutter.

To summarize, the main contributions of this paper are the
following:

• We propose a compact representation of event data
dubbed Temporal Binary Representation, exploiting a
conversion of binary event sequences into frames that
encode both spatial and temporal information.

• Our formulation allows to tune information loss and
memory footprint, making it suitable for real-time ap-
plications.

• We collected an extension of the popular DVS128 Ges-
ture Dataset under challenging conditions, which we plan
to release upon publication.

The paper is organized as follows: in Sec. II a literature
review is reported to frame the work in the current state of
the art; in Sec. III our Temporal Binary Representation is
presented; in Sec. IV we provide an overview of the models
used for classifying gestures; in Sec. V we present the dataset
used for evaluating our approach and introduce the additional
benchmark that we have collected; in Sec. VI we discuss the
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training details; in Sec. VII and VIII we report the results of
our approach; finally in Sec. IX we draw the conclusions.

II. RELATED WORK

A. Action and Gesture Recognition

Several formulations have been adopted in literature for the
task of action recognition. Early works [7], [8] have treated it
as a classification task, while more recent works have provided
a finer level of detail adding a temporal dimension (action
detection) [9], [10], [11], [12], [13], [14], [15] or spatial
information (action localization) [16], [17], [18], [19], [20].

Action detection aims at recognizing actions and deter-
mining their starting and ending points in untrimmed videos.
These approaches are often based on temporal proposals [11],
i.e. a set of frame intervals that are likely to contain a
generic action, which are then classified or refined [12], [10].
This concept has been extended in the spatio-temporal action
localization formulation, where the temporal boundaries of the
action still need to be determined, but at the same time the
actor needs to be precisely localized in each frame, as in an
object detection task. The output of such systems is a spatio-
temporal tube [16], [18], [21], i.e. a list of temporally adjacent
bounding boxes enclosing the action.

Several works have been focusing on a specific subset of
actions, referred to as gestures. Gestures can be divided into
the three categories of body, hand and head gestures [22].
The interest in gestures often stems from the need to establish
some form of interaction between humans and machines,
which indeed can happen interpreting human behaviors [23].
To reduce the reaction time to observed gestures, sensors
with high frame-rate have been exploited [24]. Of particular
interest is the usage of event cameras, which have been
largely used for gesture recognition in the recent years [25],
[26], [27], [6], [28], [29], [3], [30]. Some approaches rely
on architectures specifically tailored to handle event data,
such as spiking neural networks, which however require spe-
cialized hardware to be implemented [31], [29], [27]. Most
approaches, however, in order to exploit traditional computer
vision algorithms, adopt an event aggregation strategy that
allows the conversion of streams of asynchronous events into a
set of synchronous frames. Most of these approaches, though,
perform a temporal quantization in the form of histograms [3]
or event subsampling [26]. To avoid information loss, the bins
into which events are quantized can be shrinked, with the
side effect of generating a large amount of data that has to
be processed. Differently from these works, we propose an
aggregation strategy that is lossless up to an arbitrarily small
time interval. Our proposed approach in fact compacts several
representations in a single frame, allowing to generate less
data without discarding information.

III. EVENT REPRESENTATION

Events generated by an event camera are temporally and
spatially localized respectively by a timestamp t and pixel
coordinates x and y. Each event is also associated to a polarity
p ∈ {−1,+1}, indicating the sign of the pixel illumination

Fig. 1. Temporal Binary Representation. Events are first stacked together
into intermediate binary representations which are then grouped into a single
frame thanks to a binary to decimal conversion.

change. The output of an event camera is therefore a stream
of tuples E = (t, x, y, p). To make events interpretable by
standard Computer Vision algorithms, they must be aggregated
into frames. In general, an aggregation algorithm is a function
that maps asynchronous events into a a stream of synchronous
frames. Each generated frame f i aggregates all the events in
the interval [ti; ti + ∆t] spanning from an initial timestamp
ti and covering a temporal extent ∆t, known as accumulation
time.

A. Temporal Binary Representation

Given a fixed ∆t, we build an intermediate binary repre-
sentation bi by simply checking the presence or absence of an
event for each pixel during the accumulation time. The value
in position (x, y) is obtained as bix,y = 1(x, y), where 1(x, y)
is an indicator function returning 1 if an event is present in
position (x, y) and 0 otherwise.

We then consider N temporally consecutive binary rep-
resentations by stacking them together into a tensor B ∈
RH×W×N . Each pixel can be considered as a binary string
of N digits [b0x,y b1x,y ... bN−1

x,y ] with the most significant
digit corresponding to the most recent event. We then convert
into a decimal number each binary string, as shown in Fig.
1. This procedure allows us to compact the representation of
N consecutive accumulation times into a single frame without
any loss of information. The frame is then normalized in [0, 1],
dividing its values by N . We refer to this event representation
as Temporal Binary Representation (TBR).

Compared to standard event aggregation strategies that
generate a single frame for each ∆t, TBR reduces the memory
footprint by a factor of N . This also leads to less data to
be processed by Computer Vision algorithms, enabling time-
constrained applications. At the same time, the accumulation
time can be significantly reduced to capture events at finer
temporal scales, without increasing the total number of frames.

IV. MODEL

We adopt our Temporal Binary Representation for event
camera data to the task of Action Recognition. To process
frames, we use two different architectures.
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Fig. 2. Samples from the MICC-Event Gesture Dataset. Slow and fast execution of the action air drum (first row) and different scale and orientation of the
action arm roll (second row). A 1 second snippet is shown for each sample, where events are color-coded according to the timestamps from blue (start - 0s)
to yellow (end - 1s). The actors are shown both frontal (left) and sideways (right).

First, we combine a Convolutional Neural Network to
extract spatial features with a Recurrent Neural Network to
process sequences of frames. As a feature extractor, we train
an AlexNet [32], replacing the final fully connected layers
using a single layer with 512 neurons. The output for each
frame in the sequence is directly fed to a Long Short Term
Memory (LSTM) with 2 layers with hidden dimension 256
each. Finally, a fully connected layer with softmax activation
performs the classification.

The second model that we adopt is the Inception 3D model
[33], a state of the art architecture widely adopted with
RGB data for action recognition. Based on Inception-V1 [34],
the model relies on inflated 3D convolutions by adding a
third dimension to filters and pooling kernels to learn spatio-
temporal feature extractors. The model originally has two
separate streams for RGB and Optical Flow data. Here we
simply remove one branch and retrain the model with event
camera data aggregated with TBR.

To process videos, we follow two different approaches,
depending on the network. For the AlexNet+LSTM model
we simply feed the whole sequence of frames to the model
and collect the final output. With Inception 3D instead, we
use as input non-overlapping blocks of F frames stacked
together, which are independently evaluated. To provide a final
classification for the whole video, we adopt a majority-voting
strategy among predictions for each block.

V. DATASETS

We train our model on the the IBM DVS128 Gesture
Dataset [6]. The dataset contains a total of 1342 hand gestures
with a variable duration spanning from approximately 2 to 18
seconds (6 seconds on average). Gestures are divided in 10
classes plus an additional random class for unknown gestures.
Each of these actions are performed by 29 subjects under
different illumination conditions (natural, fluorescent and led
lights). The data is acquired using a DVS128 camera, i.e. an
event camera with a sensor size of 128 × 128 pixels [35].

We follow the split proposed by the authors, comprising 23
subjects for training and 6 for validation.

To increase the variability of the DVS128 Gesture Dataset
we recorded an additional test benchmark using a Prophesee
GEN 3S VGA-CD event camera1. The camera has a sensor
with a higher resolution of 640 × 480 pixels (VGA). The
recorded actions still belong to the 11 classes of the DVS128
dataset but are performed under more challenging conditions.
In particular, the actors were asked to perform the actions
at different speeds, in order to demonstrate the capacity of
event cameras to capture high speed movements. In addition
the actions have been recorded at different scales and camera
orientations and also under uneven illumination which is likely
to cast shadows on the body and the surroundings, generating
spurious events. The dataset was recorded by 7 different actors
of different age, height and gender for a total of 231 videos. All
the videos are used for testing, still using the DVS128 Gesture
Dataset as training set. We refer to the newly collected data
as the MICC-Event Gesture Dataset, which will be released
upon publication. In Fig. 2 a few samples from the dataset are
shown, highlighting the different execution speeds, scales and
orientations at which actions are recorded.

VI. TRAINING

We train the models using the SGD optimizer with momen-
tum. We use a learning rate equal to 0.01, which is then de-
creased to 0.001 after 25 epochs. As loss we adopt the Binary
Cross-Entropy Loss, regularized with weight decay. Overall,
the training of Inception 3D took 13 hours on an NVIDIA
Titan Xp, while AlexNet+LSTM required approximately 30
hours.

For the DVS128 Gesture Dataset, to make the frames
compatible with the input layer of the models, we apply a zero-
padding up to 227×227 for AlexNet+LSTM and 224×224 for
Inception 3D. For the MICC-Event Gesture Dataset instead,
which is recorded with the higher resolution of 640×480, we

1https://www.prophesee.ai/event-based-evk/
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TABLE I
RESULTS ON THE DVS128 GESTURE DATASET.

10 classes 11 classes
Time-surfaces [25] 96.59 90.62
SNN eRBP[26] - 92.70
Slayer [27] - 93.64
CNN [6] 96.49 94.59
Space-time clouds [28] 97.08 95.32
DECOLLE [29] - 95.54
Spatiotemporal filt. [3] - 97.75
RG-CNN [30] - 97.20
Ours - AlexNet+LSTM 97.50 97.73
Ours - Inception3D 99.58 99.62

perform a central crop of 350 × 350 pixels and then reshape
it to 128 × 128 to match the size of DVS128. Reshape is
done with Nearest Neighbor interpolation to a avoid unwanted
artifacts that may introduce noise in the event representation.
Frame values are normalized in [−1; 1] before being fed to the
models. During training we also perform data augmentation
applying random scaling, translation and rotation.

VII. EXPERIMENTS

In Tab. I we report the results on the DVS128 Gesture
Dataset for the two models AlexNet+LSTM and Inception
3D, trained with frames generated by our Temporal Binary
Representation. The results are compared with state of the art
approaches. Following prior work, we report the classification
accuracy both including and excluding the Other Gesture class,
respectively referred to as ”10 classes” and ”11 classes”.

In our models, events are aggregated with the proposed
Temporal Binary Encoding, stacking N = 8 binary represen-
tations with an accumulation time ∆t = 2.5ms. Therefore,
we use an 8 bit representation for each pixel, covering 20 ms
with each frame. It is important to notice that this allows the
model to observe events without any loss of information up
to a precision of 2.5 ms, even if a single frame stores data
covering an 8 times bigger time interval. Since the Inception
3D model takes as input chunks of videos as a tensor of
temporally stacked frames, we feed to the model chunks of
500 ms, i.e. chunks of 25 frames encoded with TBR. With
classic event aggregation strategies that use the same ∆t of
2.5 ms, this would lead to 200 frames per chunk, increasing
considerably the computational burden.

Overall, the Inception 3D model achieves the best re-
sults, reporting approximately a 2% improvement respect to
AlexNet+LSTM. Interestingly, both our architectures are capa-
ble to obtain a perfect classification of the Other Gesture class,
making the accuracy in the 11 classes settings higher than the
11 classes one. This behavior is the opposite compared to the
baselines that adopt the 10 classes setting, which consistently
lowers the accuracy.

To better assess the benefits of adopting our Temporal
Binary Representation, we report results on the MICC-Event
Gesture Dataset. We use the whole dataset for testing the
Inception 3D model, which is trained on DVS128. To provide a
comparison with other approaches, we have trained 2 baseline

Fig. 3. Events aggregated with our Temporal Binary Representation (left),
Polarity [1] (middle) and Surface of Active Events [36] (right). All three
representations are made using an accumulation time ∆t = 2.5ms.

TABLE II
RESULTS ON THE DVS128 GESTURE DATASET AND THE MICC-EVENT

GESTURE DATASET FOR INCEPTION 3D TRAINED WITH THREE DIFFERENT
AGGREGATION STRATEGIES: TBR (OURS), POLARITY [1] AND SAE [36].

TBR (ours) Polarity SAE
DVS128 Gesture Dataset 99.62 98.86 98.11
MICC-Event Gesture Dataset 73.16 68.40 70.13

variants using event aggregation strategies from the literature:
Polarity [1] and Surface of Active Events [36].

The Polarity [1] approach simply assigns a different value
to events with different polarities. Therefore, the final repre-
sentation is an image Ip, where each pixel (x, y) is given by:

Ip(x, y) =


0, if event polarity is negative
0.5, if no events happen in ∆t
1, if event polarity is positive

(1)

If multiple events are detected in the accumulation time, the
most recent one is considered.

The Surface of Active Events (SAE) [36] instead, for each
pixel measures the time between the last observed event and
the beginning of the accumulation time t0. The values are then
normalized between 0 and 255, similarly to TBR with 8 bits.
Polarity is discarded. The representation ISAE is obtained as:

ISAE(x, y) = 255×
(

tp− t0
∆t

)
(2)

Samples using TBR, Polarity and SAE are shown in Fig. 3.
In Tab. II we show the results obtained by Inception 3D

trained with the three different aggregation strategies. All three
strategies are used with an accumulation time ∆t = 2.5ms.
We also report the results on the original DVS128 Gesture
Dataset test set obtained by our model with the baseline
aggregation strategies. Interestingly, on DVS218 the three
variants still obtain higher performances than the existing
methods from the literature reported in Tab. I. This confirms
the choice of Inception 3D, which proves to be suitable for
the task of action/gesture recognition using event data.
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∆t = 1ms ∆t = 2.5ms ∆t = 5ms ∆t = 10ms ∆t = 20ms

Fig. 4. Temporal Binary Representations with different accumulation times ∆t with a number of bits n = 8. Each frame represents all the events in the
interval [0;n × ∆t]. Three different gestures are shown: Right Hand Clockwise (top); Arm Roll (middle); Other Gesture (bottom). Pixels are color-coded
according to intensity, from 0 (blue - no events) to 255 (red - an event registered for each bit of the representation).

The results on the MICC-Event Gesture Dataset overall are
much lower due to the challenging scenarios that we have
collected. However, the gap between the proposed aggregation
strategy and the baselines increases considerably, suggesting
that the Temporal Binary Representation is capable of repre-
senting event data more effectively. At the same time, since
we are using N = 8 bits, TBR generates 8 times less data to
be processed since N frames are losslessly condensed into a
single representation.

VIII. ABLATION STUDIES

We perform a series of ablation studies, showing the per-
formance of the proposed method varying the parameters of
the Temporal Binary Representation strategy. In particular, we
observe how the accuracy of the system is affected when
varying the accumulation time ∆t, the number of bits used
for the binary representation and the length of the video chunk
fed to the Inception 3D model.

A. Accumulation time
Varying the accumulation time ∆t, we can adjust the tempo-

ral quantization made by TBR. Higher accumulation times lead
to more compact representations, which however carry less
information. It can be seen from Fig. 5 that this information
loss comes with a drop in accuracy for accumulation times
bigger than 2.5 ms. Interestingly, lowering ∆t beneath this
threshold does not bring any improvement for the task at hand.
In the plot, the best result from the state of the art [3], is shown
as reference.

Fig. 4 shows samples of Temporal Binary Representations
for different accumulation times. Especially for sufficiently
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Fig. 5. Accuracy of Inception 3D on the DVS 128 Gesture Dataset, varying
the accumulation time ∆t. The best results from the state of the art [3] is
also shown as reference.

high ∆t, both the spatial and temporal nature of the encoding
appears clearly visible.

B. Number of bits

Along with ∆t, the number of bits N used for the proposed
Temporal Binary Representation, defines how much informa-
tion gets condensed into a single frame. Fig. 6 shows the
accuracy of Inception 3D on the DVS128 Gesture Dataset
using N = 4, 8, 16. Similarly to ∆t, when N becomes too
small, the accuracy of the model saturates. Throughout the
paper we have taken N = 8 bits as reference for building our
representations since it offers a trade-off between accuracy and
data compactness. Furthermore, the choice of N = 8 simplifies
data storage since events can be saved as unsigned integers
grayscale images with lossless compression.
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Fig. 7. Accuracy of Inception 3D on the DVS 128 Gesture Dataset, varying
the chunk size fed to Inception 3D. The best results from the state of the
art [3] is also shown as reference.

C. Chunk length

Here we vary the length of the chunks fed to Inception
3D. Since the model exploits 3D inflated convolutions, it
can process multiple frames concatenated together, therefore
taking into account the temporal dimension. In the case of
TBR, the temporal dimension is already encoded covering
a timespan of N × ∆t. By staking frames together we are
extending the observation timespan by a factor equal to the
number of frames. This setting is equivalent to the one adopted
in [3], where the classifier performs a majority voting after
having observed several chunks of various dimensions. In
Fig. 7, we report the results for both methods, varying the
chunk length from 100 ms to 500 ms. For our Temporal Binary
Encoding we use ∆t = 2.5ms and N = 8, hence covering
with each frame a temporal interval of 20 ms. The accuracy
of the system improves when the chunk length increases, up
to 500 ms. We did not observe significant improvements when
increasing it further by adding more frames. It has to be noted
however that increasing the chunk length will also increase the
latency of the model, since a longer part of the gesture needs
to be observed before emitting the first classification.

IX. CONCLUSIONS

In this paper we have presented an accumulation strategy
called Temporal Binary Representation for converting the out-

put of event cameras from raw events to frames, making them
processable by Computer Vision algorithms. The proposed
approach generates highly compact data, thanks to a lossless
conversion of intermediate binary representations into a single
decimal one. The effectiveness of the proposed approach
has been validated on the commonly used DVS128 Gesture
Dataset, reporting state of the art results. In addition a new
test benchmark for event-based gesture recognition has been
collected and will be publicly released.
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