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Prediction of head movements in immersive media is key to designing eicient streaming systems able to focus the bandwidth

budget on visible areas of the content. However, most of the numerous proposals made to predict user head motion in 360°

images and videos do not explicitly consider a prominent characteristic of the head motion data: its intrinsic uncertainty. In

this article, we present an approach to generate multiple plausible futures of head motion in 360° videos, given a common

past trajectory. To our knowledge, this is the irst work that considers the problem of multiple head motion prediction for 360°

video streaming. We introduce our discrete variational multiple sequence (DVMS) learning framework, which builds on deep

latent variable models. We design a training procedure to obtain a lexible, lightweight stochastic prediction model compatible

with sequence-to-sequence neural architectures. Experimental results on 4 diferent datasets show that our method DVMS

outperforms competitors adapted from the self-driving domain by up to 41% on prediction horizons up to 5 sec., at lower

computational and memory costs. To understand how the learned features account for the motion uncertainty, we analyze

the structure of the learned latent space and connect it with the physical properties of the trajectories. We also introduce a

method to estimate the likelihood of each generated trajectory, enabling the integration of DVMS in a streaming system.

We hence deploy an extensive evaluation of the interest of our DVMS proposal for a streaming system. To do so, we irst

introduce a new Python-based 360° streaming simulator that we make available to the community. On real-world user, video,

and networking data, we show that predicting multiple trajectories yields higher fairness between the traces, the gains for 20

to 30% of the users reaching up to 10% in visual quality for the best number � of trajectories to generate.

CCS Concepts: · Human-centered computing→ Virtual reality; · Information systems→Multimedia streaming; ·

Computing methodologies→ Neural networks.

Additional Key Words and Phrases: 360° videos, head motion, trajectory prediction, deep learning

1 INTRODUCTION

High-quality access to immersive environments, such as the Metaverse, is gaining traction in research interests.
Embodied experiences through, e.g., Virtual Reality (VR), indeed require high level of system performance
over multiple metrics, including quality in the ield of view (FoV) and low motion-to-photon latency. Under
constraining network conditions where wireless links or Internet congestion limit the available bandwidth and
possibly increase latency, a general principle to optimize resource utilization is to focus the bandwidth budget
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into the current FoV, and allow low-quality rendering elsewhere. In a seemingly simple modality such as 360°
videos where the user can only rotate their head in 3 degrees of freedom, realizing this principle is already non
trivial. The straight-forward solution is for the server to be informed by the client of the current head position
and to immediately send the required sections of the sphere in high quality. However, this prevents the use of a
(more than one second-) playback bufer at the client side, as the human user may have changed FoV position at
a later playback time. However, playback bufers are a key ingredient of modern streaming systems to absorb
network quality variations for the codec. Another solution is therefore to enable a longer playback bufer, of at
least few seconds (we take 5 to 10 seconds in this article), but requires to predict where the user’s FoV will be in
the next few seconds. In this article, we present a solution to realize this approach.
Several prediction models have been published to attempt predicting head or gaze motion, yet mostly over

time horizons less than 2 sec. and the vast majority of these models do not explicitly account for a constitutive
component of human attention, which is its uncertainty. Very few models have considered this characteristic
so far [9, 18, 48], but only heuristically for 360° videos. We illustrate this uncertainty in Fig. 1a, showing that
close past trajectories often lead to diverse/distant future trajectories. This has long been identiied in other
application domains such as autonomous driving [3, 24] or human pose estimation [34]. Such an ambiguity
in the data (a same input may be mapped to several outputs) leads to degraded performance and over-itting.
Considering uncertainty in optimization of resource allocation is therefore key to improve systems’ performance,
as shown in robotic planning [16] and regular video streaming considering bandwidth uncertainty [21, 47]. In
the case of 360° video streaming, predicting a single trajectory concentrates the available bandwidth budget into
a speciic area, leading to high quality when the prediction is accurate, but low quality when the movements
become unpredictable. Predicting multiple trajectories increases fairness by covering more area, accounting for
the diversity of possible future viewports.
In this article, we introduce how we can predict multiple plausible trajectories and how 360° streaming can

beneit from it. This article extends our previous publication [14]. We make three contributions:
•Motivated by our analysis of the diiculty of prediction on existing datasets, we present our discrete variational
multiple sequence (DVMS) learning framework, which produces several plausible future continuation trajectories
from a given past trajectory. It is applicable to the general family of encoder-decoder neural network architectures,
and relies on the introduction of a latent variable � to condition the decoding of the past into multiple futures. We
motivate our choices of training loss and procedure. We additionally introduce a method to estimate likelihoods
of the generated future trajectories, which is leveraged in the streaming logic. We then assess the quality of
prediction on the best-of-many performance metric, and show that our method DVMS outperforms competitors
adapted from the self-driving domain by up to 41% on prediction horizons up to 5 sec., at lower computational
and memory costs.
• [New contribution] We provide a detailed analysis of both the learned latent space where the encoding of the
past trajectories lies, and of the inluence of � on the connection between past and predicted trajectories. For
both analyses, we connect latent space locations and values of � with physical properties.
• [New contribution] We then deploy an extensive evaluation of the interest of our DVMS proposal for a streaming
system. To do so, we irst introduce a new Python-based 360° streaming simulator that we make available to the
community. We then provide an in-depth analysis of the performance of DVMS prediction when incorporated in
a streaming system, obtaining results from nearly 5 million simulations using 3378 head motion traces from 132
diferent users watching 94 diferent videos, 40 diferent network traces with 5 diferent bufer settings and 7
viewport prediction algorithms, including state-of-the-art competitors and variants of DVMS. Our results show
that predicting multiple trajectories (under constant bandwidth budget) yields a higher fairness between the
traces of the user-video pairs, with less traces with the worst quality of experience (QoE) level, and a close (resp.
slightly higher) number of traces with the maximum QoE when predicting with � = 5 (resp. choosing the best K
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per trace) futures with DVMS. We also quantify that choosing the best � yields up to a 10% higher quality in the
FoV (up to a 5% better QoE) for the 20% to 30% of traces with the highest prediction errors.
The article is organized as follows. Sec. 2 reviews major related works for uncertainty-based prediction 360°

adaptive streaming. Sec. 3 presents an analysis of the prediction diiculty on reference dataset and prediction
models. Sec. 4 presents our DVMS learning framework and its performance assessment. Sec. 5 details the analysis
of the learned encoding latent space as well as the inluence of the latent variable on the generated trajectories. Sec.
6 details the integration of DVMS into an adaptive streaming logic, motivating our design and implementation
choices with existing works, and presenting our Python-based simulator created to remedy weaknesses of
existing tools, and made available to the community. We detail the simulation settings and thoroughly analyze the
simulation results to quantify the interest of DVMS on various conditions and metrics. Sec. 7 discusses the novelty
and impact of DVMS, as well as possible improvements. Sec. 8 concludes the article and draws perspectives.

2 RELATED WORK

We position our work in two respects. We irst review trajectory prediction for 360° adaptive streaming incorpo-
rating uncertainty consideration. We then provide a concise review of existing 360° streaming simulators. For an
additional review of point-wise head or gaze motion prediction, we refer to [14, Sec 2.1].

2.1 Uncertainty-based prediction

How users explore in VR and what commonalities do their viewing patterns exhibit have fostered a lot of interest
in the last few years [1, 8, 37]. Almquist et al. [1] showed that the viewing congruence heavily depends on the
type of scene, while other works [8, 37] have shown that, upon entering a new scene, the user irst goes through
an exploration phase where movements are not strongly correlated with the visual content.

To study and cope with user movement uncertainty, several approaches have relied on hand-crafted adaptations
[9, 18, 50]. In contrast to these works relying on single trajectory prediction trying to consider the error distribution
around a single mode, our method provides diverse trajectories by design, in addition to their estimated likelihoods.

Recent works have presented deep learning approaches to consider prediction uncertainty [21, 47]. In contrast
with the vast majority of approaches considering point-wise estimates of future bandwidth for adaptive streaming,
both consider the uncertainty of bandwidth prediction in the decision problem of what encoding rate to choose
for the next video chunks to send. Both derive probability distribution of the future throughputs, that they feed
into an MPC algorithm. Yan et al. [47] designed a neural network to output a discretized probability distribution of
predicted transmission times. Kan et al. [21] considered Bayesian neural networks (BNN) to output the probability
distribution of future throughput, given the network’s historical throughput. In a very recent work, Yang et al.
[48] considered predicting multiple head trajectories but only for 360° images, not videos as we do. They consider
head trajectory as a succession of ixations and saccades, and intend to learn to capture the uncertainty of head
trajectories across diferent subjects. They resort to a Bayesian neural networks (BNN) approach, to predict, given
an input 360° image, multiple head trajectories by sampling the weights of the neural network predictor, the
inter-subject variance being modeled with a latent variable conditioning the weight distribution. This approach is
the closest to our work, but it difers from ours in several aspects. It considers 360° images, not videos as we do. It
generates trajectories for the entire viewing duration, and is meant to model the intrinsic variability between the
users, generating the trajectory uncertainty. In our work, we generate future trajectories online over a prediction
horizon of 5 seconds and considering past motion of the current user only. We therefore cope not only with
inter-user variability, but also with intrinsic uncertainty of the data in how past is correlated with future motion,
data uncertainty often referred to as aleatoric uncertainty. Also, BNN are computationally-heavy (the approach
from Yang et al. [48] is not real-time) and it accurately but to just one mode in the data [10]. In this article, we
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consider a lightweight approach to multiple trajectory prediction, able to predict multiple modes for the future
trajectory.
Tracking and trajectory prediction have been historically tackled with model-based approaches, such as

Kalman ilters [5], particle iltering [17, 31, 36], or other probabilistic methods [43]. More recently, many deep
learning approaches to multiple trajectory prediction to forecast future positions of moving agents such as
cars and pedestrians have been proposed. Compared to head motion prediction, where predictions are guided
by content and user attitude, trajectory forecasting is a more constrained task due to social behavioral rules
[15, 19, 49], inertia of moving agents and environmental constraints [3, 6, 25, 40]. Nonetheless, the ability to
forecast a multimodal prediction is of fundamental importance for planning secure trajectories for autonomous
vehicles. Due to space limitations, we refer to [14, Sec. 2.2] for a more detailed review of the literature in multiple
trajectory prediction in robotics. In the present article, we leverage this domain knowledge by considering the
variety loss [15] to enable the training of our DVMS model aiming to produce diverse plausible trajectories.

2.2 360° streaming simulators

Several tools have been made available in recent years in an efort to improve reproducibility in this ield.
Ribezzo et al. [30] released TAPAS-360° , an open-source emulator that enables designing and experimenting
omnidirectional video streaming algorithms. Unfortunately, TAPAS-360° does not support tile-based streaming,
but works with a set of pre-deined łviewsž. This makes it impossible to use with tile-based bitrate adaptation
algorithms, which are the most common type of bitrate adaptation algorithms for 360° video streaming. Jiang et
al. [20] provide code for simulating 360° bitrate adaptation and motion prediction along with Plato , but the lack
of documentation and obscure ile structure makes it diicult to use, precluding other researchers from using it
and test new algorithms. Spiteri [38] released , a simulation testbed for 360° videos as an extension of Sabre [39],
an open-source simulation environment for ABR algorithms. While Sabre360 can be used to compare adaptive
bitrate algorithms, it has some drawbacks, including an approximated considerations of stalls, impossibility to
change the tiling scheme and unrealistic segment request procedure. Our simulator takes a lot of inspiration
from Sabre360, which we consider to be the closest solution to the problem we want to solve. Our work aims
at rectifying any shortcomings the existing solutions may have for comparing motion prediction and adaptive
bitrate strategies in the context of 360° streaming.

3 MOTIVATION BEHIND MULTIPLE PREDICTION OF HEAD TRAJECTORIES

We irst outline the 360° adaptive streaming problem we aim to solve in Sec. 3.1, then formally deine the head
motion prediction problem in Sec. 3.2. In Sec. 3.3, we analyze head motion data to quantify the diversity of futures
corresponding to similar past trajectories, and show the need for multiple future predictions.

3.1 360° adaptive streaming problem

The core motivation for our contribution is to improve adaptive streaming for 360° videos by taking into
account randomness of the environment in the optimization of resource allocation. Speciically, considering the
optimization of spatial heterogeneous quality in streaming 360° videos, one has to consider the variations of
network bandwidth and human head position, which both cannot be predicted perfectly. The primary objective of
our study is to maximize the quality of experience (QoE) for users under bandwidth constraints, as formulated in
the following equations. Such stochastic optimization can generally be approached in two ways. First, RL-based
approaches [23, 44] do not split the problem into environment prediction and resource allocation, but rather
tackle it end-to-end. Other recent works show the beneit, for regular video streaming [21, 47], of splitting
the problem and designing a DNN to produce stochastic predictions of bandwidth, which are then considered
as parameters in model predictive control (MPC). For example, Yan et al. [47] used dynamic programming to
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maximize the expected cumulative QoE as shown in Eq. 1, where � is the look-ahead horizon for download, � � is
the playback bufer’s level at chunk � , ��� (·) is the QoE function, ��� is chunk � in quality � , and � (��� ) is the

stochastic download time of this chunk.

max
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︁
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Such formulation enables bufering of � chunks to absorb bandwidth variations. Kan et al. [21] formulated this
optimization by projecting the estimated bandwidth distribution onto a conidence interval. In the case of 360°
streaming, the equivalent problem can be formulated, incorporating the distribution of the FoV position over
the look-head horizon [35] as shown in Eq. 2, with � ∈ {1, �} denoting the tile index, if we consider a tile-based
formulation.
In this article, we provide a stochastic tool, the DVMS learning framework presented in Sec. 4.1, to estimate

the distribution �� [� ∈ ��� ( �)]. To do so, we make a proposal to predict several � trajectories (series of centers
of FoV) y�

� :�+� , for � ∈ {1, �}, with their estimated likelihood �� [y�
� :�+� |x0:� ]. If the problem is tile-based as above,

then we can obtain �� [� ∈ ��� ( �)] in Eq. 3.

�� [� ∈ ��� ( �)] =

�︁

�=1

�� [� ∈ ��� ( �) |y��:�+�−1]�� [y
�
�:�+�−1 |x0:� ] =

︁

� :�∈ FoV of center ���

�� [y��:�+�−1 |x0:� ] (3)

Once we have at our disposal multiple trajectory estimates and their respective likelihoods, we can express the
distribution of the FoV position as a function of these estimates as seen in Eq. 3. This distribution can in turn
be used in conjunction with the appropriate QoE function by an adaptive bitrate (ABR) algorithm to solve the
optimization problem as formulated in Eq. 2.

3.2 Head motion prediction problem

The problem we consider is formally described as follows. We consider that a given 360° video � of duration �
seconds is being watched by a user �. The head trajectory of the user is denoted x�,�0:� , with x storing the head
coordinates on the unit sphere.
Online single prediction problem: At any time � in [0,� ], predict x�,�

� :�+� with an estimate y�,�
� :�+� , that is predict

the future trajectory over a prediction horizon � , assuming only x�,�0:� is known. That is, we do not assume any
knowledge of traces other than � on this video � . Hence, for lighter notations, we drop indices � and � from x�,�0:�
and only write x0:� and y0:� .
Online multiple future prediction problem: At any time � in [0,� ], predict � possible future trajectories
y�
� :�+� , for � = 1, . . . , � , to estimate x� :�+� . This is the general problem deinition considered in related work [2, 4].
However, for optimization of heterogeneous quality decisions in a video streaming system, it is also important
to estimate the likelihood of every such possible future trajectory. We therefore augment the multiple future
prediction problem with estimation of likelihood �� [y�

� :�+� |x0:� ]. We propose a variational model in Sec. 4.1 to
address this issue.

3.3 Analysis of the need for multiple prediction in head motion data

We now analyze the need for multiple prediction from two perspectives: from the data only, and from the
performance of a given predictor on this data. We consider the test data of the MMSys18 dataset, described in
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Sec. 4.3. In what follows, past (resp. future) trajectories are considered over a horizon of 1 sec. (resp. 5 sec.) as
done in recent work [7, 33]. We exclude the 5% shortest past trajectories and the 5% shortest future trajectories
from this analysis, as they may skew the distance calculations between pairs of trajectories.
Distance metric: We compare two trajectories �1 and �2 of equal length � using the average point-wise great-
circle distance, deined in Eq. 4. We consider pairs of trajectories with the lowest distance to be the closest to
each other.
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·
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Fig. 1. Distances between pairs of past, future, and predicted trajectories for pairs of close past trajectories on the test videos
of the MMSys18 dataset. The colors are associated with the video IDs and are the following: blue: PortoRiverside, orange:
PlanEnergyBioLab, green: Waterpark, red: Warship, purple: Turtle.

We investigate how the distance between past trajectories relates to the distance between their corresponding
true futures. To do so, for each timestamp of each video in the dataset, we consider all pairs of users, and select
200 pairs per video with the closest past trajectories. Every pair of users yields the distance between both past
trajectories, and the distance between both respective true future trajectories. Fig. 1a represents the scatter plot
of both distances for every pair. We observe that, for 200 pairs of closest past trajectories per video, 90% of the
corresponding future pairs have a distance more than twice the distance between their past trajectories (above
the � = 2� line). Also, we observe that for close past elements, more distant futures are produced, on this dataset,
for exploration-type videos PortoRiverside and PlanEnergyBioLab. Speciically, 81% of the points are above the
� = 4� line for PortoRiverside and 85% of the points are above the � = 4� line for PlanEnergyBioLab. Fig. 1b
represents the distance between past elements and the distance between future elements, for every � -th closest
pair, with � ≤ 5000 (distances are smoothed with a moving average). It conirms that the average future distance
is generally higher that the past distance, with a greater diference obtained for exploration videos.

This is an indication that relatively close past trajectories may lead to distinct/farther apart future trajectories,
which may create diiculties when attempting to train a prediction model on such data. Indeed, a (neural) regressor
trained with the regular mean square error (MSE) cannot map similar inputs to diferent outputs. We refer to
[14, Sec. 3.3] showing that the diversity of ground truth data is not properly reproduced by a reference predictor
considering both past motion and visual content. These two indings provide solid rationale for designing multiple
trajectory prediction methods.

4 DEEP STOCHASTIC PREDICTION OF MULTIPLE HEAD TRAJECTORIES

We irst present our proposal for a multiple prediction framework in Sec. 4.1, exempliied with an architecture in
Sec. 4.2, and prediction performance resulted are presented in Sec. 4.3.
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4.1 Discrete Variational Multiple Sequence (DVMS) prediction

ℎ�− ℎ� ��+ ��+
�

Fig. 2. Probabilistic graphical model of the proposed stochastic discrete variational multiple sequence (DVMS) prediction
framework. A random variable is represented with a circle, a deterministic state with a diamond.

Wepresent a new learning framework formultiple headmotion trajectory prediction, named discrete variational
multiple sequence (DVMS). In contrast to particle iltering, which approximates the posterior distribution in a
sampling-based manner and considers a fully stochastic generative model where the state variable is stochastic
and changes every time step, DVMS does not learn an approximate posterior of the state variable and does not
consider a fully stochastic generative model. It builds on deep latent variable models like VAEs [22, 29]. We refer
to [14, Sec. 4.1] for a background on deep generative models for sequences, which we could not include here
due to space limitations. DVMS is designed to be compatible with any sequence-to-sequence architecture. The
rationale for such design is as follows. Our goal is to design a framework for multiple prediction of head motion
for deep architectures, which provides key properties:

P1 suiciently diverse predictions y�
� :�+� , for � = 1, . . . , � ,

P2 state-of-the-art performance when � = 1,
P3 estimates of likelihoods of the predicted trajectories,
P4 lexibility and low computational cost.

Generative model: The probabilistic graphical model of DVMS is depicted in Fig. 2. For any encoder fed with
past sequence x0:� , an embedding ℎ� is produced. This embedding is then concatenated with a unique latent
variable �. The latent variable is key in our DVMS proposal. As opposed to using a singular model with increased
variance, diferent values of the latent variable are meant to capture the diversity present in diferent modes of
trajectories. The resulting concatenation produces the irst hidden state �� of the decoder. Considering that the
encoder is made of recurrent connections with hidden state ℎ� , the generative model writes as Eq. 5, where UZ�
denotes the uniform distribution over discrete set Z� , and MLP stands for multi-layer perceptron to denote
one or several fully connected (FC) layers. To generate multiple prediction, every �� ∈ Z� generates a future
trajectory y�

� :�+� . To enable diverse predictions (P1), we do not constrain the distribution � (�) we sample from to
be conditioned on �0:� in test, in contrast to what was done by Alahi et al. [28], but instead draw � uniformly
in Z ∈ [−1, 1]� (where � is the dimension of vector �). To meet (P3), � is drawn from a discrete set Z with
� elements. The same discrete set of values Z� is then used at test time, leading to a deterministic model. If
there is some stationarity in how likely is every trajectory produced from every �� , then we can exploit this
stationarity for likelihood estimation (P3). We therefore consider a discrete ixed set of possible � values to ease
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this exploitation, which we describe in Sec. 5.2.

ℎ� = RNN��� (ℎ�−1, x�−1) , ℎ0 = 0

� ∼ UZ�

��+1 = MLP(ℎ� , �) (5)

y� = x�

y�+� = FC(��+� ) + y�+�−1 , for � ≥ 1

��+� = RNN��� (��+�−1, y�+�−1) , for � ≥ 2

Training procedure: To ensure (P2), we enforce the prior distribution � (�) � is sampled from at training time
to be the same as in test (contrary to work from Babaeizadeh et al. [2]), i.e., we do not consider an inference
network. This allows to avoid the mismatch between � (�) and �(� |�0:� ), which impedes the training convergence.
However, doing so also adds noise to the sequence decoder which, if trained with gradient descent performed over
every sampled trajectory obtained from �� , for all � ∈ {1, �}, learns to discard the � input and only produces a
single trajectory corresponding to the baseline, as described by Babaeizadeh et al. [2]. To avoid this phenomenon,
we instead train our architecture with the best of many samples (BMS) loss [4], also named the variety loss [15, 41],
deined in Eq. 6.

L(x0:� , � ) = min
�∈{1,� }

�
(
y�� :�+� , x� :�+�

)
(6)

where � (·) can be any distance between two trajectories on the sphere. This loss thus consists, for every past
trajectory sample, in selecting sample ��∗ generating the best match to the single ground truth future. The
gradient descent is hence performed only on a single �∗ sample out of the trajectories generated by the model.
With the variety loss, the model learns an eicient mapping between each �� and a mode of trajectory. This
reduces the variance by focusing the prediction around the diferent modes and prevents the architecture from
learning to discard � as being an uninformative input for prediction.

DVMS is lexible (P4) because it can be usedwith any sequence-to-sequence architecture, being it an architecture
processing video content [33] in case of streaming of stored content, or an architecture processing only the past
user’s trajectory [7] in case of live streaming. Indeed, Bayesian methods like BNN [26] and Monte-Carlo dropout
[11] require to change how every network weight is considered in train (generating multiple weight samples). In
contrast, DVMS only consists in adding a latent variable to modulate the initial state of the sequence-to-sequence
decoder with a random component, independently of the actual structure of the sequence-to-sequence encoder
and decoder.
DVMS is also lightweight (P4) because the additional training cost, w.r.t. the original sequence-to-sequence

architecture, only comes from the latent variable � to be concatenated with the encoder’s last hidden state (MLP
to learn in Eq. 5). This additional cost is also limited because we do not learn an approximate posterior �(� |x0:� ),
that is an additional neural network (named inference network and used only in train), but rather directly sample
� fromUZ� both in test and train.

All four properties (P1)-(P4) are experimentally evaluated in Sec. 4.3 .

4.2 Proposal of a DVMS-based architecture

To demonstrate the interest of the proposed DVMS learning framework of multiple head trajectory prediction, in
this section we propose a simple architecture akin to those presented in [28, Fig. 2] or [33, Fig. 4]. This architecture
is of type sequence-to-sequence and is represented in Fig. 3. It is however simpliied compared to the previous
literature, as we consider double-stacked gated recurrent units (GRU) instead of single or double-stacked LSTM.
Here we purposefully do not consider the visual content in order to simplify the presentation and analysis of
our contribution which is on the variational framework DVMS for multiple future prediction, and not on a

ACM Trans. Multimedia Comput. Commun. Appl.



Deep Variational Learning for 360° Adaptive Streaming • 9

GRU64 GRU64 GRU64 GRU64

GRU64 GRU64 GRU64 GRU64

FC128 FC128

Fig. 3. Proposed example of a DVMS-based architecture.

speciic neural architecture. So other architectures can be incorporated in our framework, such as based on more
advanced recurrent techniques like transformers [7] or fusion of multimodal input considering the visual content
[33]. We discuss more this compatibility in Sec. 7.
Architecture: We set � = 1 as the dimension of �. The encoder is made of a doubly-stacked GRU with 64 neurons
(and default GRU activations). The inal GRU’s hidden state is then fed to a 128-neuron fully connected layer. The
output of this layer is concatenated with � and fed to another 128-neuron fully connected layer. The decoder is
also a doubly-stacked GRU with same hyper-parameters as the encoder. The past sequence is restricted to x�−�:�

with� = 1sec., matching recent work [7, 33], and we set � = 5sec. as the prediction horizon. The sampling rate
of the scanpaths is 5Hz, thus the past (resp. future) sequences are 5 (resp. 25) sample-long.
Training procedure: The model is trained using the loss described in Eq. 6. Distance � (·) is taken as the

cumulative Euclidean distance, that is �
(
y�
� :�+� , x� :�+�

)
=

∑�
�=0.2

y��+� − x��+�
2. The optimizer is AdamW, with a

learning rate of 5 · 10−4 and a batch size of 64.

4.3 Results on multiple trajectory prediction

In this section we assess (P1) the diversity of predictions, (P2) the performance for � = 1, and (P4) the compu-
tational cost. Likelihood estimation (P3) is addressed in Sec. 5.2. Results have been updated from our previous
article [14] by adding results on a new dataset, MM18 [27], and by using the original code and weights provided
by the authors for the deep-position-only baseline instead of a re-implementation.

4.3.1 Experimental setings.

Datasets: We consider four datasets of 360° videos with head motion traces:

• MMSys18 [8]: head motion traces of 57 subjects watching 19 360° videos, all lasting 20 seconds.
• CVPR18 [46]: head motion traces of 45 subjects watching 208 360° videos lasting from 15 to more than 80
seconds (36 seconds on average).
• PAMI18 [45]: head motion traces of 58 subjects watching 76 360° videos, lasting from 10 to 80 seconds (25
seconds on average).
• MM18 [27]: head motion traces of 48 subjects watching 9 360° videos, lasting from 19 to 49 seconds (30 seconds
on average).

For all of these datasets, we use the same split as described in the supplemental material from by Romero et al.
[33], such that there is no overlap between the videos in the train and test sets of CVPR18, PAMI18, and MM18,
as well as no overlap between the users of MMSys18. Additionally, we do not make predictions for the irst 6
seconds of the video with any of the considered competitors, as done by Romero et al. [33] to skip the user’s
initial exploration phase.
Metrics: When it comes to evaluating the quality of the multiple predictions, the major challenge is that several
plausible futures may correspond to a single input, but the datasets provide only a single ground-truth future.
The best way to assess (P1) is therefore to check if the known ground truth is covered by one of the few
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predictions, while the others can eiciently explore the search space to cover the futures of close inputs. This
can be done by using the winner-take-all or best of many samples (BMS) metric [4]. Therefore, as is usually done
as standard practice in multiple sequence prediction [2, 24, 40], we report the BMS metric. Speciically, BMS
at prediction step � is deined in Eq. 7, where the great-circle distance between points �1 and �2 on the unit
sphere is gcd(�1, �2) = arccos(sin�1 sin�2 + cos�1 cos�2 cos � with � the latitude and � the absolute diference
in longitude, and �∗ is deined in Eq. 8.

1

�

1

�

1

�

︁

�

︁

�

︁

�

gcd(��
∗

�,�,�+� , ��,�,�+� ) (7)

�∗ (�, �, �) = argmin
�

�︁

�=0.2

gcd(���,�,�+� , ��,�,�+� ) (8)

We report the BMS metric in igures, and we report in a more compact form in tables the average prediction
error, which is the average over � ≤ � of the BMS metric, similarly to what Marchetti et al. reported [24]. For
� = 1, the BMS metric is equal to the great-circle distance, hence enabling the assessment of (P2) with the same
metric as used for single sequence prediction [7, 33].
Competitors: We compare our models with three competitors. As no competitor exists so far for multiple
prediction of head motion, we adapt a recent method from the self-driving domain.
• Deep-position-only: Deep-position-only is a baseline introduced by Romero et al. [33]. It is a simple sequence-to-
sequence LSTM taking past head positions as input. Additional details can be found in section 3.2 of [33]. Thanks
to the reproducible framework they published [32], we were able to directly evaluate Deep-position-only with the
provided code and model weights and achieve the same performance as reported.
• MANTRA-adapted: MANTRA is an approach described by Marchetti et al. [24] to predict the trajectory of
other vehicles. It uses an auto-encoder in conjunction with a memory network. The auto-encoder is irst trained
to reconstruct future trajectories from past and future trajectories. A memory-writing controller is then trained
to ill the memory with embeddings from the encoder. The memory takes the form of a (key, value) dictionary,
where the embeddings of past trajectories are the keys that are used to retrieve the values, embeddings of future
trajectories. At prediction time, embeddings of yet unseen past trajectories are computed and matched with
keys from the memory. The K most similar keys are used to retrieve the K corresponding values, which are then
fused with the embedding of the actual past and decoded into K predicted future trajectories. Memory is built at
training time with the following procedure. During training, if none of the predicted trajectories is close enough
(deined by a manual threshold) to the ground truth future trajectory, the embeddings (past and future) of this
trajectory are added as new key and value to the memory. The loss for the writing controller is designed so
that it only writes relevant trajectories into the memory. Embeddings that are too similar and do not help to
decrease the prediction error are not added to the memory. At test time, the memory is read-only and illed with
embeddings from the training set. For this model to work properly, the trajectories have to be normalized so that
they are translation and rotation-invariant. Building from this approach, we build a MANTRA-adapted model as
a multiple trajectory prediction baseline to be compared to our proposed model. The changes from the original
MANTRA model are described as follows. The trajectories are 3-dimensional instead of 2-dimensional. We adapt
the manual distance thresholds used for the writing controller with values that it our data and give an acceptable
memory size. We do not normalize the trajectories in the same way. As there is no rotation invariance in head
motion, we carried out several tests with translation invariance (separating yaw and pitch). The results were best
when only re-centering on yaw (longitude). The results were worse with re-centering both axes, only pitch or
with no re-centering. Since video cue is not considered in DVMS, thus not providing any contextual information
or map, MANTRA-adapted does not employ any contextual cue either, such as the łIterative Reinement Modulež
[24], which normally integrates information from the map.
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• VPT360: VPT360 is the recurrent transformer-based viewport prediction architecture presented by Chao et al.
[7]. We do not reproduce their results because the code is not available at the time of writing, but we report the
values presented in their work [7] on the MMSys18 dataset and compare DVMS with VPT360 on the exact same
settings.
4.3.2 Experimental results.

Prediction error: Fig. 4 shows the prediction error (great-circle distance, BMS metric of DVMS for � > 1) of
DVMS against against state-of-the-art single trajectory predictors on all four datasets. The shaded area represents
the 95% conidence interval. Detailed prediction results on the same datasets are also available in the appendix
in Tables 1, 2, 3 and 4. We observe that DVMS (� = 1) slightly outperforms both Deep-position-only (by 3.4%)
and VPT360 (by 2.3%) on the MMSys18 dataset for when looking at the average prediction error over 5 seconds
(prediction step � ≤ 5sec.). DVMS (� = 1) also slightly outperforms Deep-position-only on the PAMI18 and
MM18 datasets, by 2.1% and 2.8%, respectively, hence meeting (P2). On CVPR18, DVMS largely outperforms
Deep-position-only by 20%, which may suggest that Deep-position-only was not properly trained on this dataset.
For (P1), we observe for � = 2 a 25% reduction in prediction error for � ≤ 5sec. with DVMS, compared to the
single prediction competitors Deep-position-only and VPT360. For higher � , the error reduction increases, and
tends to saturate for � = 4 then � = 5. DVMS hence meets both (P1) and (P2) on these datasets. Fig. 5 compares
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Fig. 4. Prediction error (great-circle distance) of DVMS (ours, same colors as Fig. 5) against state-of-the-art single trajectory
predictors on various datasets. Datasets from let to right: MMSys18, CVPR18, PAMI18, MM18. Colors have the same meaning
across all subfigures.

the performance of DVMS with the MANTRA-adapted competitor on the same datasets. Detailed prediction
results can also be found in the appendix in Tables 1, 2, 3 and 4. We irst notice that for every � = 1, . . . , 5, DVMS
consistently yields a lower prediction error than MANTRA-adapted. Also, we observe that MANTRA-adapted
does not match the state of the art performance of Deep-position-only for � = 1. Over all datasets, for � ≤ 5sec.,
the prediction gains of DVMS over MANTRA-adapted range from 26% to 47% (average 36%) for � = 1, from 26%

to 41% (average 33%) for � = 2, from 27% to 37% (average 33%) for � = 3, from 27% to 37% (average 33%) for
� = 4, and from 26% to 38% (average 33%) for � = 5.

Constructing futures by combining past with future pieces from the training set does not seem suicient
for MANTRA-adapted to produce diverse enough futures, compared with DVMS which instead modulates
the initial state of the sequence decoder with a random component. The results on all four datasets therefore
show that DVMS is able to produce diverse predictions (P1), outperforming the multiple prediction competitor
MANTRA-adapted, while providing comparable performance to state-of-the-art single trajectory predictors when
� = 1 (P2).

We ran experiments where DVMS was tested on diferent datasets than it was trained on to assess its gen-
eralization capabilities. We report the cross-dataset performance in the appendix in Table 5. We can see that
models trained on smaller datasets such as MMSys18 and MM18 struggle to generalize to other datasets, with a
prediction error usually higher than the other models. However, we observe that models trained on CVPR18
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Fig. 5. Prediction error (BMS metric) of DVMS (ours, solid lines) against MANTRA-adapted (dashed lines) on various datasets.
Datasets from let to right: MMSys18, CVPR18, PAMI18, MM18. Colors have the same meaning across all subfigures.

(the largest of the four datasets) tend to generalize well to other datasets, even outperforming models trained
MMSys18 and MM18 on their own test datasets in some cases, without any kind of dataset-speciic ine-tuning.
We recommend using the CVPR18 dataset to train DVMS, as models trained on CVPR18 are always the best or
second-best performing on any test dataset.
Computational cost: Hardware used to train and test the methods is a Nvidia RTX 3080 with 10GB of video
RAM on a station with 128GB of RAM. Table 6 (appendix) shows that DVMS and MANTRA-adapted have
signiicantly less weights than both single prediction methods Deep-position-only and VPT360. While DVMS
has more neural network parameters than MANTRA-adapted, the execution time to generate a trajectory at test
time is 14% less than MANTRA-adapted. This is due to MANTRA-adapted having to do memory lookup. Indeed
MANTRA-adapted has an extra memory, which DVMS does not, and the size of this memory, shown in Table
7 (appendix) in percentage of the training set size, varies with the target accuracy and the dataset (and hence
cannot be generalized to other datasets before actual training). Also, training MANTRA-adapted requires two
phases, the irst to train the auto-encoder, the second for the memory writing controller.
Summary: We have validated (P1), (P2), and (P4) on four datasets of head motion data: The error of DVMS

signiicantly decreases when � increases, and it largely outperforms MANTRA-adapted (P1). DVMS matches or
outperforms VPT360 and Deep-position-only for single trajectory prediction (P2). DVMS has signiicantly less
parameters than VPT360 and Deep-position-only and has the lowest latency of all compared methods (P4). We
validate (P3) in Sec. 5.2.

5 LATENT SPACE ANALYSIS AND LIKELIHOOD ESTIMATION

In this section, we irst analyze the structure of the latent space learned from the trajectory data and we connect
latent space locations and values of � with physical properties. We then present our method to estimate the
likelihood of every of the � generated trajectories, instrumental to deploy DVMS in a streaming system in Sec.
6.1.2.

5.1 Linking latent space features to trajectory properties

The model learns a representation of the past trajectory before being combined with � to generate a future
trajectory. In this section, we irst show what trajectory properties the encoder is able to perceive, and then we
analyze the inluence that diferent values of � can have on the generated trajectories when combined with the
output of the encoder.

5.1.1 Learned representation of past trajectories. We deine as łembedding of the past trajectoryž the output of
the last layer of the encoder of DVMS, i.e., the output of the last orange layer in Fig. 3 (128 dimensions). Fig. 6
shows a 2D representation (obtained with t-SNE) of all the embeddings of the test set of the CVPR18 dataset
obtained with a model trained to predict three trajectories (� = 3) on the train set of the CVPR18 dataset. Each
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dot corresponds to a past trajectory, and embeddings that are similar in the 128-dimensional space should be
close to each other on the 2D representation. In Fig. 6a, the embeddings dots were colored according to the speed

(a) Colored by past trajectory speed (b) Colored by past trajectory direction

Fig. 6. 2D representation of the embeddings of past trajectories learned by the encoder on the CVPR dataset

of their corresponding past trajectories. Blue dots represent embeddings of low-speed trajectories and yellow
dots represent embeddings of high-speed trajectories. In Fig. 6b, the embeddings dots were colored according to
the direction of their corresponding past trajectories. Blue dots represent embeddings of trajectories going to the
left and red dots represent embeddings of trajectories going to the right. In both cases, we can see some areas
where the colors are well separated, with yellow łhigh-speed areasž and blue łlow-speed areasž in Fig. 6a, and
blue łleft-direction areasž and red łright-direction areasž in Fig. 6b. We can observe a correspondence between
łhigh-speed areasž and areas where the direction is clearly left or right. łLow-speed areasž correlate with areas
where the direction seems random.

Finding: DVMS is able to diferentiate and represent diferent speeds and angles in its latent space. Speciically,
it can easily identify high speed trajectories coming from left or right.

5.1.2 Influence of �. Depending on weight initialization, training set and data order, the model will map diferent
trajectory features to �. Here we show an example for a model trained to predict three trajectories (� = 3) on the
CVPR dataset.

To understand and evaluate the inluence of � in the model, we show the estimated probability density functions
(PDF) of the speed and direction of the output trajectories generated with each �� . The approximate probability
density functions are obtained through kernel density estimation (KDE), which we consider to be easier to read
and understand than histograms for our data.
Fig. 7 shows the inluence of � on trajectory speed. Fig. 7-left shows the distribution of the past and future

trajectory speeds. Fig. 7-center shows the distribution of the output trajectory speeds generated with each ��
and that corresponding to the ground truth future (GT). Fig. 7-right shows the distribution of the ratios between
past and future speed. A ratio of 100 (1) means that the generated/future trajectory has the same speed as its
corresponding past. A ratio greater (resp. lower) than 1 means that the generated/future trajectory has a greater
(resp. lower) speed than its corresponding past. We can see that predicted speed is always at least slightly lower
than actual speed (which we see for all � on all datasets), most likely because predicting higher speed (longer
trajectories) will lead to higher error on average. The model learns to be conservative by predicting shorter (lower
speed) trajectories. We also see much less variance in predicted speed than in actual speed (which we also see for
all � on all datasets), but having more predicted trajectories (higher � ) allows for more diversity overall, since
each � can cover diferent parts of the distribution. In this example, the model learns to łspecializež �: �2 generates
low speed trajectories while �1 and �3 give similar speeds, usually in the same order of magnitude as GT.
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Fig. 8 shows the inluence of � on trajectory direction. Fig. 8-left shows the distribution of the past and future
trajectory directions. Fig. 8-center shows the distribution of the output trajectory directions generated with each
�� compared to the ground truth future (GT). Fig. 8-right shows the distribution of the diferences between past
and future direction. A diference of 0 means that the generated/future trajectory kept going in the same direction
as its corresponding past. A diference greater (resp. lower) than 0 means that the generated/future trajectory
turned right (resp. left) relative to its corresponding past. The direction peaks that we observe on Fig. 8-left and
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Fig. 8. Distribution of the trajectory directions depending on �

Fig. 8-center indicate more trajectories going left ( −�2 ) or right (�2 ) than in other directions. This means there is a
lot more horizontal head movement than vertical head movement, which is expected in head motion data. We
can discern 3 peaks on Fig. 8-right. The irst peak at −� corresponds to cases where the past was going to the
right but the future is going to the left, the second peak at 0 corresponds to cases where the past and the future
go in the same direction, and the third peak at +� corresponds to cases where the past was going to the left but
the future is going to the right.
In this example, while �1 and �3 give similar speeds, the generated trajectories have completely diferent

directions. With �1, the generated trajectories always go in the left direction. With �3, the generated trajectories
always go in the right direction. The direction of trajectories generated with �2 follow a distribution close to GT.
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We can see that in order to go left, trajectories generated with �1 will either continue in the same direction as
the past or turn around to go left if the past was going right. Similarly, trajectories generated with �3 will either
continue or turn around in order to always go right.

Finding: DVMS learns to eiciently use the values of � by specializing them. Each �� will generate a diferent
mode of future trajectory. In this example, we have seen that one �� is used to generate low speed futures, while
the other two are used to generate higher-speed futures, but with opposite directions.

5.2 Exploiting properties of � to estimate trajectory likelihood

For a regression problem, the likelihood �� [y�
� :�+� |x0:� ] of a future trajectory can be expressedwith exp

−� (y� :�+� ,x� :�+� ) ,
hence estimating the likelihood is equivalent to estimating the distance of a trajectory to the ground truth, that is
the negative log-likelihood. We deine in Eq. 9 �����,�,� the error of the �-th generated trajectory y�

� :�+� , the motion
of user � on video � at timestamp � .

�����,�,� = �
(
y�� :�+� , x� :�+�

)
(9)

With a variational framework, a standard approach to estimate the likelihood would be to rely on the model
(whose parameters are set from the training data) and on the known past x0:� . In this work, we argue that this is
not suicient, and that other available information must be considered, namely the past generated trajectories
y�
� :min(�+�,� )

, for all � ∈ {1, �} and � ∈ [0, �], and the errors obtained by every such trajectory when compared

to the available ground truth at � x� :min(�+�,� ) . Indeed, these errors are informative of which �� , for � ∈ {1, �},
have best coded the latent features connecting the future trajectory with the past trajectory. If the errors over the
various �� , for � ∈ {1, �}, have suicient stationarity in time, then we can exploit such stationarity to estimate

the likelihood of the predicted trajectories. We therefore deine an estimate the estimate �̂����,�,� (� ) of ���
�
�,�,� in

Eq. 10.

�̂��
�
�,�,� (� ) = �

(
y��−� :min(�−�+�,� ) , x�−� :min(�−�+�,� )

)
(10)

where � is a past window of size controlling the age of the trajectory ground truth to produce the error estimate.
Let us recall that the �-space is discrete, with Z� = {�� }

�
�=1

. This means that �����,�,� is predicted by the error

produced by the trajectory y�
�−� :�−�+� generated with the same �� and predicted at time � − � over a horizon

� , but with the error only counted on the timestamps for which the ground truth x�,� is available, i.e., on
[� − �,min(� − � + �, �)].
The accuracy of this estimator therefore depends on the stationarity in time of the distribution of the error

over the latent values �� , for � ∈ {1, �}. In other words, if the error ���� of the trajectory �̂� generated from ��
was low in the recent past, it is likely to still be low. We refer to [14, Sec. 5.2] where we have shown that the error
for a given latent value �� exhibits temporal stationarity that we can exploit to estimate the likelihood, and where
we have evaluated the likelihood estimation on three datasets, hence validating (P3). We detail in Sec. 6.1.2 how
the generated trajectories and their corresponding likelihoods are used to estimate the probability distribution of
the future viewport by assigning łtile scoresž.

6 360° VIDEO STREAMING WITH DVMS

This section presents an extensive evaluation of the interest of our proposal DVMS in a 360° streaming system.
We irst present the simulation environment we consider: the requirements we set to match a realistic streaming
system, the new tool we introduce to realize this environment, and howmultiple trajectory prediction is leveraged
in the streaming logic. We then present the simulation settings and results, quantifying the gains on diferent
metrics.
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6.1 Simulating 360° video adaptive streaming with SMART360

6.1.1 About SMART360. We have chosen to run simulations, as user experiments can be very costly. We aim
at solving the problem deined in Sec. 3.1: a person watching 360° video in VR streamed over a network with
variable bandwidth. The video is temporally divided in segments and spatially divided in tiles. Tiles for each
segment are available in several quality levels, higher quality tiles requiring higher bit rates. Every Δ�� seconds,
the client uses an ABR algorithm to makes request for new tiles which are then downloaded and put in the
bufer while the video is playing. The ABR algorithm is responsible for selecting the tiles and quality levels based
on user viewport prediction, network bandwidth estimation and bufer levels. If the viewport contains a tile
that is not present in the bufer in any quality level, the video playback is paused until the tile is downloaded
(stall period). Despite the wide availability of head motion traces datasets, we could not ind any suitable public
software tool to simulate a realistic tile-based VR adaptive streaming system, lexible enough to work with any
360° video, head motion and network trace.
To overcome the drawbacks of the few existing emulation/simulation tools, we develop a Python-based

simulation environment named SMART360. SMART360 simulates the adaptive streaming process for 360°
videos. SMART360 ofers a realistic streaming behavior, with stall events and ABR planning, along with highly-
conigurable code, with many inputs and settings. Owing to the lack of space, we refer to [13] for the details on
SMART360. We implemented the ABR algorithm described in Sec. 6.1.2 and the DVMS-based model described in
Sec. 4.2 in the simulation environment. The code and data are made available12.

6.1.2 DVMS implementation in SMART360. In the SMART360 simulator, the client uses an ABR algorithm to
make requests for new tiles every Δ�� seconds. The ABR makes its quality allocation for incoming segments
decisions based on tile scores, given by the viewport prediction algorithm. Before the prediction is made, all the
tile scores are initialized to 0. DVMS outputs the predicted head positions for a given segment. In our case, DVMS
outputs 5 ·� points, because the segments are 1 second long and the head motion trace sampling rate is 5 Hz. For
each predicted position (FoV center), we calculate the list of tiles belonging to this FoV. The scores of the tiles

belonging to this FoV are updated as follows: � += L�
5·� , with � being the score of any tile belonging to the FoV

calculated from a position of a predicted trajectory of likelihood L� . Since
∑
�∈� L� = 1, the maximum score for

a tile that belong to all the predicted FoVs is 1. The remaining tiles are given a score inversely proportional to the
distance to the viewport.
Adaptive bitrate (ABR) algorithm: The objective of the ABR algorithm is to maximize the expected QoE given
the predicted viewport, the estimated network bandwidth and the bufer level. This task is achieved by selecting
the right tiles to download in the right quality, such that the quality inside of the user’s viewport is as high as
possible, without any stall event. Every Δ�� seconds, the ABR algorithm is used to produce a download schedule
that will be sent as a request to the server. Adaptive bitrate algorithms for regular videos form a well-studied
ield, and many types of ABR strategies exist. We can deine three categories of ABR strategies: rate-based, which
base their decisions upon bandwidth estimation, bufer-based, which base their decisions upon bufer level, and
hybrid approaches (among which there can be learning-based approaches), which can use both the estimated
bandwidth and the bufer level. We chose to implement a simple hybrid ABR algorithm named BaselineABR for
tile-based streaming that can demonstrate the advantages of multiple trajectory prediction. This algorithm was
kept simple for an easier understanding of the streaming behavior with diferent viewport prediction algorithms.
The objective of BaselineABR is to maximize the expected viewport quality, while maintaining a minimum bufer
level ���� . A simpliied version of the BaselineABR is described in Algo. 1 in the appendix.

1https://gitlab.com/SMART360/SMART360-simulator
2https://gitlab.com/SMART360/SMART360-preprocessing
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6.2 Simulation setings

The results presented in Sec. 6.3 summarize metrics from 4,729,000 simulations using 3,378 head motion

traces of 132 diferent users watching 94 diferent videos, 40 diferent network traces with 5 diferent

bufer settings and 7 diferent viewport prediction algorithms.

6.2.1 Videos. The simulations were run on 94 diferent videos coming from the test sets of three datasets the
DVMS model was trained on (see Sec. 4.3.1). The original video iles of each dataset were retrieved, split in a 12x6
tile layout and re-encoded with libx265, using the HEVC compression standard. The tiles were each encoded in
ive diferent quality levels with diferent constant rate factors (CRFs): 16, 22, 28, 34, and 40. Finally, the
videos were packaged in 1 second segments for streaming delivery.

6.2.2 Head motion traces. Each video was watched by an average of around 36 users (range 28-58), which gives
a total 3,378 head motion traces, coming from 132 diferent unique users. Each trace contains the head positions
of the user with a 5 Hz sampling rate. These traces were not included in the training of the model, as they come
from the test sets of the datasets.

6.2.3 Network traces. The simulations were run on 40 diferent 4G network traces from the 4G/LTE dataset
published by van der Hooft et al. [42]. They are made of 40 traces of bandwidth and latency measurements along
several routes in the city of Ghent, Belgium. For the comparisons between ABR algorithms to be relevant, the
average throughputs of the network traces were scaled to approximately match the video bit rates, because we
need to be in a situation where the algorithm has to adapt to the network constraints to make a diference in
quality.

6.2.4 Bufer setings. The maximum size of the bufer was always set to 10 segments (i.e., 10 seconds), because
it is not possible to show the beneit of viewport prediction with larger values, since we only predict the future
head positions 5 seconds ahead. The simulations were run for 5 diferent values of ���� , the ABR bufer constraint
(see Sec. 6.1.2): 1, 2, 3, 4, and 5 seconds. With this parameter, we can tune the behavior of the ABR algorithm and
show results for diferent levels of aggressiveness.

6.2.5 Prediction algorithms. 7 diferent prediction algorithms were tested in the simulations:

• NoPred: no assumption is made about the viewport location and the same score is given to all tiles before
ABR allocation. This baseline serves as an example of łmaximum fairnessž, everyone receiving the same
quality. We choose to compare all prediction methods to this baseline to assess the QoE fairness gains,
while showing a signiicantly better average QoE than this maximum fairness baseline.
• StaticPred: we assume that the person will stay still and that the viewport will not change in the near
future. Tiles present in the viewport are given a score of 1.0, and remaining tiles are given a score inversely
proportional to the distance to the viewport. This serves as a baseline for comparison.
• DVMS, � = 1: DVMS is used to predict one trajectory of the future head positions. Since there is only one
trajectory, the likelihood of this trajectory is set to 1.0 and the tile scores are computed as described in Sec.
6.1.2.
• DVMS, � > 1 (2 to 5): DVMS is used to predict � possible trajectories of the future head positions. The
respective likelihoods are based on the past error as described in Sec. 5.2. The tile scores are computed as
described in Sec. 6.1.2.

In the following sections, we write DVMS-k instead of DVMS, � = � to improve readability.

6.2.6 Metrics. We report results on two metrics in the following section:
Viewport quality: For each video segment, a person sees multiple tiles that were downloaded at a certain quality
level. The quality level of a tile is approximately logarithmically proportional to its bitrate, because of the choice
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of CRFs that was made in Sec. 6.2. The viewport quality metric is computed as the weighted average of the quality
of the tiles that were seen during a segment. The weights are proportional to the duration for which this tile was
visible during the segment.
Normalized QoE: After reviewing several references including QoE functions combining various components,
we decided to make our own in order to avoid subjective hyper-parameter choices required by existing formula.
We deined our own QoE function, the normalized QoE (Eq. 11) combines the viewport quality, the stall periods,
the spatial quality variance, and the temporal quality variance in one metric, with a value between 0 and 1. �

is the duration of the video and � is the stall duration over the simulation. �� is the average viewport quality

over the video, ����� is the maximum possible viewport quality for a frame. ��� is the average spatial quality
variance (standard deviation of quality levels of the tiles in a viewport) over the video, ������ is the maximum
possible spatial quality variance for a frame. ��� is the temporal quality variance (mean of absolute diferences
between average viewport quality of segments) over the video, ������ is the maximum possible temporal
quality variance over a video.

��� =

� ·��

����� · (� + �)
·

(
1 −

���

2 · ������

)
·

(
1 −

���

2 ·������

)
(11)

6.3 Results

In this section, we compare the results for simulations with the viewport prediction algorithms presented in
Sec. 6.2.5. For DVMS, only � = 1, � = 5, and � = best are shown for better readability. The choice of number
of trajectories to predict (�) is related to prediction uncertainty, where factors such as video features such as
spatial and temporal information as well as user emotions can have a strong impact [12]. The łbest �ž shows
the potential gains if we were able to use this information to choose the best � (ranging from 1 to 5) for each
(user, video) pair, but even more gains could be found by dynamically adapting � during video playback, using
head speed or past prediction error. In these experiments, we veriied that the bandwidth consumption of all the
compared algorithms was identical (not shown here due to space limitations).

6.3.1 Viewport quality and QoE gains of DVMS. We present results showing viewport quality and QoE gains in
Fig. 9, where the simulations were run with ���� = 1, which is where diferences between viewport prediction
algorithms are the most visible. The order of performance between predictors is nearly identical for all values of
���� . As ���� increases, the advantage of viewport prediction slowly decreases. We provide detailed results in
the appendix in Tables 8 and 9 for completeness.
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Fig. 9. Viewport quality and QoE gains over all simulations with ���� = 1�
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Fig. 9-left shows the average viewport quality across all segments during the simulations. The average viewport
quality is not necessarily an integer, each bin contains the number of segments with an average viewport quality
lower or equal to its tick label, but greater than the preceding bins. NoPred (i.e., uniform spread of the quality
budget) gives the most segments with the lowest quality and the fewest segments with the highest quality. We
can see that StaticPred already gives signiicant quality improvements. This igure also illustrates a key diference
between single and multiple trajectory prediction: DVMS-5 gives fewer segments with a very low viewport
quality, but also fewer segments with a very high viewport quality than DVMS-1. While DVMS-1 leads to more
segments with very low quality than DVMS-5, it is still fewer very-low-quality segments than StaticPred. While
DVMS-5 leads to fewer segments with very high quality than DVMS-1, it is still more very-high-quality segments
than StaticPred. DVMS-best gives the best of both worlds with less segments with very low quality and more
segments with very high quality.

Fig. 9-center shows the viewport quality gain over NoPred for all the played segments of the simulations. We
can see that DVMS-5 has an average viewport quality gain (48.0%) slightly better than the gain of DVMS-1 (46.7%).
The median gain is better: 50% of segments have a viewport quality improvement over 20.4% with DVMS-5,
while 50% of segments have a viewport quality improvement over 14.3% with DVMS-1. Improvements are also
more evenly distributed with DVMS-5, with 61.2% of segments having an increased viewport quality (20.0%
decreased, 18.8% unchanged), while 57.2% of segments had an increased viewport quality (20.4% decreased, 22.4%
unchanged) with DVMS-1.
Fig. 9-right shows the QoE gain over NoPred for all simulations. We can see that DVMS-5 has an average

QoE gain (15.6%) slightly worse than the gain of DVMS-1 (16.2%), but the median gain is slightly better: 50% of
segments have a QoE improvement over 10.0% with DVMS-5, while 50% of segments have a QoE improvement
over 9.8% with DVMS-1. Improvements are once again more evenly distributed with DVMS-5, with 71.9% of
simulations having an increased QoE, while 70.0% of simulations had an increased QoE with DVMS-1.
Summary: These results highlight the aggressiveness of DVMS-1. Single trajectory prediction completely

focuses the quality in a speciic area: if the prediction is accurate, we can have very-high-quality segments, but
if the prediction is inaccurate, we will have very-low-quality segments. Predicting more trajectories is a more
conservative approach. Over all ���� , DVMS-5 gives improvements comparable to DVMS-1 on average but leads
to better fairness between users than DVMS-1: there are more cases of segments where the quality is improved,
slightly fewer cases with very high quality, considerably fewer cases with very low quality.

6.3.2 Link with prediction error. To conirm that this diferent distribution of quality gains between DVMS-1 and
DVMS-5 is indeed due to the prediction error, we irst look at the link between normalized QoE and prediction
error in Fig. 10-left. The x-axis of this igure is the prediction centile: the average prediction error for all (users,
videos) was sorted and equally distributed in 100 sorted bins, so that each bin has the same number of (users,
videos). Unsurprisingly, there is a clear decreasing trend across all � : the QoE decreases when the prediction
error increases.

We now show the average viewport quality (resp. QoE) of segments (resp. simulations) against DVMS prediction
error deciles in Fig. 10-center (resp. 10-right). The process for deciles is the same as for centiles, but there are
only 10 bins instead of 100. We can see that predicting one trajectory is better than predicting 5 trajectories when
head motion is predictable and that the single trajectory is very accurate. However, when head motion becomes
less predictable and prediction error increases, predicting 5 trajectories leads to higher viewport quality and QoE.
As previously shown in Fig. 9, predicting multiple trajectories increases fairness between users, as individual
bad predictions have a smaller negative efect on viewport quality and QoE than in the case of single trajectory
prediction. Finally, we can see that the potential gain in visual quality (resp. QoE) when using DVMS-best over
DVMS-1 is around 10% (resp. 5%) for roughly 30% of the data, when the prediction error is at its highest (deciles
7-10).
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Fig. 10. Average viewport quality and QoE against DVMS prediction error quantiles. Horizontal blue arrow: 30% of the users,
vertical arrow: 10% gain in visual quality, 5% gain in QoE.

7 DISCUSSION

We have presented the irst proposal to generate multiple future plausible trajectories of user head or gaze motion
in 360° videos. Our DVMS learning framework establishes a irst baseline paving the way to more principled
approaches to stochastic motion prediction in this domain. Such stochastic approach is also instrumental to
enable the automatic triggering of interactive strategies when the predictability of the user motion is evaluated to
be too low. While the average gains of DVMS compared to static prediction appear limited, our approach showed
that increasing the number of predicted trajectories signiicantly increases the fairness between the users. These
prediction gains are limited by the predictability of head motion, and depend on many factors, such as the type of
video or the emotional state of the user [12, 33]. Applying the DVMS framework to content-aware architectures
[33], in connection to user and video proiles, is expected to bring more gains and will enable to investigate more
intricate connections between scene video content, user state and motion predictability. Indeed, we have shown
the type of gains that DVMS can bring, particularly to reduce the number of (video,user) traces with lowest visual
quality and QoE, while maintaining the number of traces to high-quality levels. Beyond enabling such a fairness
increase, maximizing it however requires to dynamically adapt the number � of predicted trajectories to both the
type of scene and the current state of the user, that is to the (video,user) pair, but also over time, considering
changing types of scene and user attentional states. The more predictable the user motion (i.e., in sync with the
content and with an attention-driving content with a low number of points of interest), the less the need for a
high � . This is the subject of exciting future work, involving emotion recognition and learning.

8 CONCLUSION

In this article, we presented the irst method for multiple head motion prediction in 360° videos, motivated by the
user motion uncertainty yielding a high diversity of future trajectories. Our main contribution is a new learning
framework, called DVMS, which builds on deep latent variable models and allows to predict multiple future
trajectories from a given past. We design a training procedure to obtain a lexible and lightweight stochastic
prediction model compatible with sequence-to-sequence architectures. We analyze the structure of the learned
latent space and the inluence of the latent variable on the generated futures, and are able to connect them with
physical properties of the trajectories. We assess DVMS on 4 datasets and show that it outperforms competitors
adapted from the self-driving domain by up to 41%, on prediction horizons up to 5 seconds. We then deploy
an extensive simulation framework for which we introduce a new Python-based streaming simulator (made
available to the community), and consider 4 diferent datasets of user, video and network bandwidth traces. We
show that predicting multiple trajectories yields a higher fairness between the traces, the gains for 20% to 30%
of the users reaching up to 10% in visual quality for the best number � of trajectories to generate for a given
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trace. DVMS paves the way for multiple trajectory prediction in VR. In particular, DVMS can be adapted to
6DoF interactive environments, such as gaming or other forms of virtual social spaces, where both head-gaze
and body movements need to be predicted. Adapting to these new environments brings numerous challenges.
Open research questions still need to be addressed, such as the predictability of movements in 6DoF, 3D saliency
estimation, or the consideration of additional structured descriptions of these environments.
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ONLINE APPENDIX

Table 1. Prediction error over all � ≤ � on the MMSys18 dataset. Lowest prediction error for a given � is underlined, lowest
prediction error for all � is highlighted in bold.

Method
Average prediction error

� ≤ 1� � ≤ 2� � ≤ 3� � ≤ 4� � ≤ 5�

VPT360 (reported) (� = 1) 0.239 0.438 0.603 0.726 0.809
Deep-position-only (� = 1) 0.261 0.450 0.598 0.721 0.818

MANTRA-adapted

� = 1 0.333 0.621 0.828 0.967 1.066
� = 2 0.296 0.515 0.651 0.743 0.824
� = 3 0.290 0.472 0.575 0.645 0.717
� = 4 0.287 0.453 0.539 0.592 0.659
� = 5 0.274 0.433 0.515 0.566 0.625

DVMS (ours)

� = 1 0.245 0.432 0.581 0.700 0.790
� = 2 0.262 0.424 0.516 0.566 0.613
� = 3 0.228 0.372 0.439 0.465 0.501
� = 4 0.218 0.352 0.402 0.418 0.452
� = 5 0.216 0.343 0.386 0.397 0.432

Table 2. Prediction error over all � ≤ � on the CVPR18 dataset. Lowest prediction error for a given � is underlined, lowest
prediction error for all � is highlighted in bold.

Method
Average prediction error

� ≤ 1� � ≤ 2� � ≤ 3� � ≤ 4� � ≤ 5�

Deep-position-only (� = 1) 0.369 0.529 0.637 0.713 0.768

MANTRA-adapted

� = 1 0.351 0.594 0.767 0.887 0.981
� = 2 0.323 0.503 0.608 0.678 0.755
� = 3 0.298 0.456 0.544 0.598 0.656
� = 4 0.292 0.433 0.500 0.543 0.596
� = 5 0.303 0.426 0.487 0.533 0.581

DVMS (ours)

� = 1 0.200 0.355 0.470 0.555 0.618
� = 2 0.200 0.326 0.394 0.435 0.477
� = 3 0.190 0.305 0.357 0.383 0.419
� = 4 0.187 0.295 0.337 0.355 0.387
� = 5 0.186 0.287 0.321 0.335 0.366
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Table 3. Prediction error over all � ≤ � on the PAMI18 dataset. Lowest prediction error for a given � is underlined, lowest
prediction error for all � is highlighted in bold.

Method
Average prediction error

� ≤ 1� � ≤ 2� � ≤ 3� � ≤ 4� � ≤ 5�

Deep-position-only (� = 1) 0.140 0.239 0.311 0.361 0.396

MANTRA-adapted

� = 1 0.236 0.429 0.571 0.666 0.736
� = 2 0.211 0.343 0.426 0.479 0.530
� = 3 0.202 0.313 0.375 0.417 0.457
� = 4 0.186 0.291 0.351 0.389 0.428
� = 5 0.194 0.290 0.342 0.378 0.413

DVMS (ours)

� = 1 0.135 0.233 0.304 0.353 0.388
� = 2 0.127 0.207 0.253 0.284 0.313
� = 3 0.128 0.202 0.238 0.262 0.289
� = 4 0.124 0.192 0.224 0.244 0.271
� = 5 0.125 0.189 0.218 0.235 0.258

Table 4. Prediction error over all � ≤ � on the MM18 dataset. Lowest prediction error for a given � is underlined, lowest
prediction error for all � is highlighted in bold.

Method
Average prediction error

� ≤ 1� � ≤ 2� � ≤ 3� � ≤ 4� � ≤ 5�

Deep-position-only (� = 1) 0.183 0.301 0.392 0.466 0.529

MANTRA-adapted

� = 1 0.221 0.411 0.572 0.693 0.779
� = 2 0.204 0.341 0.431 0.499 0.565
� = 3 0.204 0.330 0.402 0.450 0.501
� = 4 0.202 0.310 0.366 0.409 0.456
� = 5 0.199 0.302 0.356 0.391 0.435

DVMS (ours)

� = 1 0.159 0.282 0.377 0.453 0.514
� = 2 0.155 0.262 0.326 0.369 0.410
� = 3 0.156 0.254 0.302 0.330 0.364
� = 4 0.148 0.236 0.275 0.298 0.332
� = 5 0.149 0.237 0.273 0.292 0.322
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Table 5. Prediction error over � ≤ 5� when training and testing on diferent datasets. For a given test dataset and a given K,
the lowest prediction error is highlighted in bold, the second lowest prediction error is underlined.

Test dataset
Train dataset MMSys18 CVPR18 PAMI18 MM18

� = 1

MMSys18 0.790 0.695 0.466 0.706
CVPR18 0.778 0.618 0.397 0.561
PAMI18 0.789 0.643 0.388 0.718
MM18 0.881 0.796 0.802 0.514

� = 2

MMSys18 0.613 0.569 0.420 0.542
CVPR18 0.581 0.477 0.321 0.437
PAMI18 0.604 0.493 0.313 0.501
MM18 0.698 0.606 0.530 0.410

� = 3

MMSys18 0.501 0.491 0.371 0.414
CVPR18 0.503 0.419 0.295 0.362

PAMI18 0.530 0.442 0.289 0.440
MM18 0.597 0.533 0.487 0.364

� = 4

MMSys18 0.452 0.444 0.350 0.354
CVPR18 0.460 0.387 0.275 0.341
PAMI18 0.476 0.404 0.271 0.407
MM18 0.531 0.481 0.435 0.332

� = 5

MMSys18 0.432 0.418 0.330 0.347
CVPR18 0.427 0.366 0.261 0.321

PAMI18 0.451 0.385 0.258 0.376
MM18 0.483 0.434 0.364 0.322

Table 6. Computational cost of the diferent models.

Method # parameters Single sample prediction time (ms)

Deep-position-only 4.21M 46.98
VPT360 6.3M N/A
MANTRA-adapted 76k 6.81
DVMS (ours) 110k 5.87
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Table 7. Memory size (in number and percentage of training samples) of the MANTRA-adapted method for diferent number
of predicted trajectories � across all the datasets.

Dataset MMSys18 CVPR18 PAMI18 MM18
Training set size 12600 560342 271440 32160

K=1
6413

(50.90%)
258758

(46.18%)
79503

(29.29%)
10520

(32.71%)

K=2
3601

(28.58%)
142113

(25.36%)
34564

(12.73%)
4575

(14.23%)

K=3
2041

(16.20%)
83702

(14.94%)
20059

(7.39%)
2489

(7.74%)

K=4
1227

(9.74%)
50265

(8.97%)
10470

(3.86%)
1431

(4.45%)

K=5
811

(6.44%)

36325

(6.48%)

7632

(2.81%)

797

(2.48%)

Algorithm 1 Simpliied BaselineABR logic

1: Input: Available bandwidth budget �, Tile scores ��,� , Indices of empty (segments, tiles) in bufer (�,� )
2: Parameters:Minimum bufer level ���� , Quality levels �� , � = 1, ..., 5, Score threshold � = 0.2
3: Output: Download schedule ���
4: (����,����) = �� < ����, �� ∈ (�,� ) ⊲ Indices of empty (segments, tiles) inferior to ����
5: if Cost(����,����, �1) > � then

6: ��� ← ����,����, �1 ⊲ Request all under ���� anyway
7: else

8: ��� ← �,� ,�5 ⊲ Initialize schedule with max quality
9: while Cost(���) > � do

10: �,� ,�� ← ���

11: �� =

{
�� if ��,� > � or (�� == �1 and �� ∈ (����,����))

��−1 otherwise (remove from schedule if already min quality)
12: � = min(� + 0.2, 1)
13: end while

14: end if

15: ��� ← Sort(��� , ��,� ) ⊲ Sort with highest tile scores irst
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Table 8. Visual quality gains (in %) over NoPred for all segments during simulations for diferent values of ���� . We report
average and median gains in the łAvg. / Med.ž columns. We report the proportion of segments (in %) for which there was an
increase / decrease in viewport quality over NoPred in the łInc. / Dec.ž columns (some segments keep the same quality). Best
results are highlighted in bold, second best are underlined.

���� = 1 ���� = 2 ���� = 3 ���� = 4 ���� = 5
Avg. / Med. Inc. / Dec. Avg. / Med. Inc. / Dec. Avg. / Med. Inc. / Dec. Avg. / Med. Inc. / Dec. Avg. / Med. Inc. / Dec.

StaticPred 44.3 / 11.1 54.7 / 22.2 39.8 / 4.8 51.2 / 22.1 36.1 / 0.0 48.7 / 22.1 32.6 / 0.0 45.3 / 21.8 29.1 / 0.0 42.2 / 21.5
DVMS, � = 1 46.7 / 14.3 57.2 / 20.4 41.4 / 9.6 53.4 / 20.3 37.3 / 1.9 50.6 / 20.2 34.0 / 0.0 47.3 / 20.0 31.0 / 0.0 44.5 / 19.6
DVMS, � = 5 48.0 / 20.4 61.2 / 20.0 42.3 / 14.3 58.0 / 19.8 36.9 / 9.7 54.1 / 19.6 33.6 / 2.2 50.8 / 19.3 30.4 / 0.0 47.5 / 18.9
DVMS, � = best 53.1 / 25.0 62.8 / 18.4 47.7 / 17.1 59.6 / 18.2 43.2 / 12.2 56.1 / 18.1 39.8 / 6.6 52.6 / 17.8 36.2 / 0.0 49.3 / 17.5

Table 9. QoE gains (in %) over NoPred for all simulations for diferent values of ���� . We report average and median gains
in the łAvg. / Med.ž columns. We report the proportion of simulations (in %) for which there was an increase in QoE over
NoPred in the łInc.ž columns. Best results are highlighted in bold, second best are underlined.

���� = 1 ���� = 2 ���� = 3 ���� = 4 ���� = 5
Avg. / Med. Inc. Avg. / Med. Inc. Avg. / Med. Inc. Avg. / Med. Inc. Avg. / Med. Inc.

StaticPred 14.3 / 7.8 65.8 13.2 / 7.1 65.0 12.2 / 6.1 63.3 11.0 / 5.3 62.2 10.0 / 4.5 61.0
DVMS, � = 1 16.2 / 9.8 70.0 14.8 / 8.9 68.9 13.8 / 7.9 67.5 12.9 / 7.2 66.5 12.0 / 6.7 65.6
DVMS, � = 5 15.6 / 10.0 71.9 14.2 / 9.2 71.1 12.8 / 8.1 69.3 12.1 / 7.6 68.8 11.3 / 7.1 67.9
DVMS, � = best 19.7 / 13.2 77.9 18.4 / 12.4 77.3 17.4 / 11.4 76.2 16.6 / 10.9 75.7 15.5 / 10.2 74.7
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