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Disentangling Features for Fashion Recommendation
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Online stores have become fundamental for the fashion industry, revolving around recommendation systems

to suggest appropriate items to customers. Such recommendations often suffer from a lack of diversity and

propose items that are similar to previous purchases of a user. Recently, a novel kind of approach based

on Memory Augmented Neural Networks (MANNs) has been proposed, aimed at recommending a variety of

garments to create an outfit by complementing a given fashion item. In this article we address the task of com-

patible garment recommendation developing a MANN architecture by taking into account the co-occurrence

of clothing attributes, such as shape and color, to compose an outfit. To this end we obtain disentangled rep-

resentations of fashion items and store them in external memory modules, used to guide recommendations

at inference time. We show that our disentangled representations are able to achieve significantly better per-

formance compared to the state of the art and also provide interpretable latent spaces, giving a qualitative

explanation of the recommendations.
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1 INTRODUCTION

With a gross sale of over $3,000 billion, the fashion industry covers 2% of the world’s Gross Do-

mestic Product (GDP).1 These numbers are possible thanks to a thriving industry that sells and
promotes fashion items all over the world, always renovating and rethinking itself. For this reason,
captivating customers has become an essential part of the business process, as they are an essen-
tial asset. It is thus of paramount importance that they should not only be offered a satisfactory

1https://fashionunited.com/global-fashion-industry-statistics/.
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selling process but also accompanied in exploring and discovering new products that may be of
their interest among the huge catalogs available both in stores and online.

For these reasons, the fashion industry constantly strives to engage customers into discovering
new products. From mass advertising to personalized offers, multimedia systems are exploited to
spark interest in the final user, with the intent of selling specific products. On the other hand,
customers themselves often require assistance for discovering new outfits or identifying garments
compatible with previously purchased items. This sort of aid may stem from employees in physical
shops, but it must be replaced by automatic recommendation algorithms in online stores, which
nowadays are the principal source of income for fashion companies.

An easy way to recommend garments is to follow trends or suggest items according to user
preferences. This will likely yield recommendations capable of engaging lots of users in the short
term, but will also keep suggesting similar items over and over. For effective long-term recommen-
dations, suggested items must be variegated and cover different styles to meet temporary changes
in customer tastes or be suitable for different social occasions. With this in mind, we formulate
the problem of garment recommendation as the task of suggesting dressing modalities rather than
exact fashion items out of a given collection. In fact, we want to guarantee diversity instead of
proposing multiple similar outfits that only differ by small details.

In particular, in this article we address the problem of recommending compatible complemen-
tary clothing items that compose an outfit, e.g., identifying a set of bottoms that can be paired with
a given top (Figure 1). To ensure diversity we rely on two strategies. First, we learn disentangled
representations for shape and color using a self-supervised contrastive learning approach; then,
we train two Memory Augmented Neural Networks (MANNs) [10, 20, 22, 24, 30, 35] to iden-
tify and store pairing modalities for shapes and colors separately. We exploit MANNs to model
general garment compatibility and then, only after having identified different pairing modalities,
we refine results including fashion trends to make recommendations.

The idea of using MANNs for fashion recommendation has been recently explored in [7], demon-
strating promising capabilities thanks to the ability to match relevant pairs of garments that com-
pose an outfit at training time and then making this information part of the recommendation
process at inference time. Here, we extend this idea by proposing an improved memory module
with an adaptive controller and separate memory banks to identify pairing modalities for differ-
ent attributes, such as shape and color. This is made possible by our disentangled feature learning
approach.

The task of compatible garment recommendation, which we address in this article, is closely
related to the one of outfit compatibility estimation. This has been previously addressed in the
literature by several works [26, 27, 29, 33]. The two settings differ since compatibility estimation
establishes if two or more given items fit well together, whereas compatible garment recommen-
dation proposes a ranked list of candidates that are compatible with a given item. This makes
the recommendation task more challenging since a model must learn to select suitable garments
among a large collection of fashion items. Nonetheless, we show how our model can be easily
modified to perform compatibility estimation. In fact, our model naturally generates rankings for
compatible garments, which can be used as a means to provide compatibility scores for outfits.
Therefore, our model can be employed for a variety of tasks, i.e., to recommend garments, esti-
mate compatibility between complementary garments, and retrieve compatible outfits among a
set of candidates.

The main contributions of this article are the following:

• We exploit separate color and shape data augmentations while training our feature extractor
as an autoencoder, in order to learn disentangled features relying only on self-supervision.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1s, Article 39. Publication date: January 2023.
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Fig. 1. Overview of our garment recommendation system. A memory network stores features extracted from

the encoder part of a convolutional autoencoder (ENC). Top proposals are retrieved by decoding features

using the decoder part of a convolutional autoencoder (DEC).

• We store non-redundant compatible pairing modalities in external memories, both for color
and for shape. Our MANNs are equipped with a novel memory controller with an adaptive
threshold, designed to write only a small fraction of representative samples.
• We demonstrate the effectiveness of combining disentangled features and external memo-

ries for tasks of compatible garment recommendation, outfit compatibility estimation, and
complementary item retrieval, obtaining state-of-the-art results on two different datasets.

2 RELATED WORK

Given the great recent interest in customer recommendation, a lot of recent work among the sci-
entific community has been focusing on estimating interest and performing recommendations in
the fashion domain [3, 4, 14, 16, 23, 29]. In this work, we are interested in recommending fashion
items that are compatible with a given complementary garment. For instance, given a top, we want
to propose a ranked list of compatible bottoms that can be used to create an outfit.

A large crop of literature has studied how to model compatibility between fashion items when
composing an outfit [5, 11, 26, 27, 29, 32, 33], although often declining the problem as compatibility
estimation. Several of these works leverage a Bayesian Personalized Ranking (BPR) scheme to
model compatibility between garments [17, 26–29]. The first to adopt such an approach was Song
et al. [28] to overcome the limitations of matrix factorization due to excessive data sparsity. The
approach was then extended by exploiting different strategies such as attentive knowledge distilla-
tion through a teacher-student network [27], personalized compatibility modeling including per-
sonal preferences [29], visual-textual multimodal learning [17], garment matching of labeled and
unlabeled data with siamese networks [9], and attribute-wise interpretable compatibility scheme
with personal preference modeling [26].

A different take on the problem has been provided by recent works trying to exploit contextual
information from outfits including additional complementary garments and accessories. The col-
lection of items composing an outfit has been either processed as a whole relying on graph-neural
networks to learn context-conditioned item embeddings [5] or treated as a sequence using bidirec-
tional LSTMs to iteratively predict the next compatible item based on previous ones. Additionally,
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[31] proposes an outfit representation that is learned on both notions of similarity and inter-outfit
compatibility, leveraging an image embedding that respects item types and jointly learns notions
of item similarity and compatibility in an end-to-end model. In [32], instead, siamese networks are
exploited to learn a visual notion of compatibility across categories and a feature transformation
from images of items into a latent space that expresses compatibility. To further analyze the prob-
lem, an approach to not only predict but also diagnose outfit compatibility has been proposed in
[33], where backpropagation gradients are used to identify the incompatible factors.

All the aforementioned approaches that address garment compatibility, however, focus on deter-
mining whether an outfit or a complementary garment is more compatible compared to another.
Such models are thought to provide compatibility scores to rank outfits, rather than recommending
a list of suitable items to complement a partial outfit. Recommending compatible items is indeed a
more challenging task since the problem does not break down to comparing a few candidate outfits,
but instead requires to identify suitable fashion items among a large collection of garments. This
issue has recently been raised in [6, 7], where bottom garments are proposed to match an input
top. The focus here shifts from modeling compatibility between garments to understanding pos-
sible dressing modalities to complement a top. In this article we follow such line of research. The
problem has then been extended in [6] by leveraging emotive color information to give multiple
recommendations that adhere to a desired style.

The most similar approach to ours is the one of De Divitiis et al. [7]. The authors propose
to use a MANN as the central part of their garment recommendation system to pair compatible
clothing items. The MANN is populated with a memory writing controller and trained to store a
non-redundant subset of samples, which is then used to propose a ranked list of suitable bottoms
to complement a given top. Similarly, we exploit a MANN but use two separate memory modules
to store disentangled features for shape and color. This enables a more precise modeling of how
fashion items can be worn together, breaking down the problem to how classes of garments can
be paired and how colors can be combined. In addition, we also improve the memory controllers
by adding a regularization term and exploiting an adaptive threshold to avoid trivial solutions that
in the original formulation may occur when data is unbalanced. This leads to significant improve-
ments compared to [7].

Aside from compatibility, research involving recommendation systems in the fashion domain
has followed several promising directions. Several works have designed specific systems to model
user preferences. For example, in [15], personalized outfit recommendation is achieved by suggest-
ing sets of items through a functional tensor factorization method. This models the interactions
between user and fashion items by using multi-modal features of fashion items and leveraging
gradient-boosting-based methods to map the feature vectors into some low-dimensional latent
space. He and McAuley [12] instead make use of visual features extracted from product images
to build a scalable factorization model to incorporate visual signals into predictors of people’s
opinions. A consumer-oriented recommendation system by fuzzy techniques and Analytic Hi-

erarchy Process (AHP) has been proposed in [37] to take into account consumers’ perception
on products. With efficiency in mind, [18] learns a binary code for efficient personalized fashion
outfit recommendation using a set of type-dependent hashing modules to learn binary codes and
a module that conducts pairwise matching. Focusing on the style, [13] creates a recommendation
method that employs a pair of neural networks: a feedforward network generates article embed-
dings in “fashion space,” which serves as input to a recurrent neural network that predicts a style
vector in this space for each client, based on their past purchase sequence. Dynamic personalized
recommendations have also been studied in [2], where user profiles are built with customers in
the loop by analyzing facial reactions to recommended items.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1s, Article 39. Publication date: January 2023.
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Fig. 2. The garment is encoded into two disentangled latent spaces, representing color and shape separately.

The model is trained as an autoencoder to reconstruct the input image.

An interesting parallel line of research has focused on learning domain-specific features for fash-
ion items. For instance, [36] focuses on aesthetic features, proposing a new tensor factorization
model to incorporate such features in a personalized manner. To realize interpretable and cus-
tomized fashion outfit compositions, [8] proposes a partitioned embedding network to learn inter-
pretable representations from clothing items by leveraging an auto-encoder module, a supervised
attributes module, and a multi-independent module to build an outfit composition graph and an at-
tribute matching map. A pool or independent representation is learned by using attribute-specific
classifiers in [14]. Such features are used to build attribute prototypes and perform attribute ma-
nipulation. Similarly to these works, we also propose to learn discriminative features to represent
garments, but we rely on a self-supervised approach to disentangle color and shape latent spaces.
We do not exploit manually annotated attributes; instead, we use specifically designed forms of
data augmentation paired with a novel contrastive learning strategy.

3 COMPATIBLE GARMENT RECOMMENDATION

We formulate the task of compatible garment recommendation as the task of retrieving a dressing
modality by suggesting suitable complementary fashion items to be paired with a given one.

More formally, let o = (t ,b) be an outfit composed of a top item t and a bottom item b. Each
garment is labeled with a color and shape label, referred to as c and s , respectively. Given a top
t , we want to retrieve a set of bottoms {bk }k=1:K that are compatible with t . To consider a recom-
mendation correct, at least one of the proposed bottoms bk has to share the same color and shape

labels with the ground-truth bottom b; i.e., at least one k ∈ {1, . . . ,K } must exist for which ck = c
and sk = s .

Our recommendation model is based on two external memory modules in which disentangled
color/shape features are stored. Each module acts as an associative memory, relating top features
with bottom features and describing different combination modalities for either color or shape.
The retrieved modalities are then combined to recreate a final recommendation that can be re-
ranked according to general preferences. In the following we present the building blocks of our
architecture.

3.1 Disentangled Feature Representation

We process garment images with a convolutional encoder followed by a flattening operation. In
this way we map garments into a latent representationϕ. To obtain separate features for shape and
color, we use two different Multi-Layer Perceptron (MLP) models, MLPshape and MLPcolor , that
yield descriptors ϕshape and ϕcolor , which are intended to capture different traits of the garment.
The two representations are then concatenated, blended together with an additional MLP, and
finally decoded with a deconvolutional decoder reconstructing the input image. The model, shown

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1s, Article 39. Publication date: January 2023.
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Fig. 3. We exploit rotated and color jittered augmentations to learn disentangled features for shape and color

with triple losses. Each branch processes an image with a different augmentation (top: rotated image; center:

original image; bottom: color-jittered image).

in Figure 2, acts as an autoencoder with two intermediate latent states, trained by optimizing a
reconstruction MSE loss Lr ec over pixels.

To disentangle the hidden representations of such states and capture either shape or color, we
adopt a contrastive learning approach using a siamese network with three branches (Figure 3). At
training time, we feed to the model three images in parallel. The main branch processes the original
unaltered image, while the other two branches receive as input color-jittered and rotated versions
of the same image. Thanks to these augmentations, the three images share attributes pair-wise: the
main branch and the color branch receive images of garments with the same shape, while the main
branch and the shape branch observe images with the same color. The rotated and color-jittered
images instead do not share any color/shape attribute. In order to disentangle the latent states of
the autoencoder, we optimize two triplet margin losses [1] across the three branches.

The rationale is to make features of shared attributes close in the latent space, while pushing
away the feature of the altered image. For instance, we want the shape features to be similar for
the original and color-jittered images while being dissimilar to the ones of the rotated image.

Let the triplet margin loss be defined as

Ltr iplet (ϕ,ϕ+,ϕ−) = max{d (ϕ,ϕ+) − d (ϕ,ϕ−) +M, 0}, (1)

where d (·, ·) is a distance function, ϕ is a reference anchor feature, ϕ+ a positive feature that we
want to be close to ϕ, and, vice versa, ϕ− is a negative feature that we want to separate from the
others by a margin M . In our experiments we use the cosine distance and M = 0.5.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1s, Article 39. Publication date: January 2023.
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Fig. 4. Architecture overview. The top garment is encoded into disentangled color and shape features, which

are used as access keys for the two memory modules. The best K bottom features are read from the memories

and are combined via outer product. After a re-ranking based on frequency co-occurrence of top-bottom

attributes, we are able to decode the best K bottoms.

To ensure ϕcolor and ϕshape respectively capture color and shape characteristics, we optimize
the following losses:

Lcolor
tr iplet = Ltr iplet

(
ϕcolor ,ϕ

rot
color ,ϕ

jit ter

color

)
, (2)

Lshape

tr iplet
= Ltr iplet

(
ϕshape ,ϕ

jit ter

shape
,ϕrot

shape

)
. (3)

Here, the rot and jitter superscripts indicate that the feature is extracted from the rotated im-
age or the color-jittered image, respectively. Overall, to train the siamese autoencoder, we jointly
optimize the reconstruction losses for the three branches, which share all the parameters, and the
two triplet margin losses for shape and color:

L = Lr ec + Lrot
r ec + L

jit ter
r ec + λ

(
Lcolor

tr iplet + L
shape

tr iplet

)
, (4)

where the triplet losses are weighed by a coefficient λ, which we set to 0.01.
We train the autoencoder using both top and bottom images, thus obtaining generic en-

coder/decoder functions that can be used for any garment image. For the sake of simplicity, in the
following we refer to ϕT for features extracted from top garments and ϕB for bottom garments.

3.2 Model

To perform recommendations, we adopt a MANN, with two external memories,Mcolor andMshape ,
as depicted in Figure 4. The idea is derived from [7], where top and bottom garments are paired in a
permanent memory, according to user-defined outfits. Here, instead, we learn to store pairs of top-
bottom features concerning either shape or color and we perform a late fusion in the decoding
phase. The advantage of our approach is that we can identify non-redundant modalities to pair
colors and shapes separately, thus avoiding combinatorial growth in memory size and obtaining
more diverse recommendations.

Both memories contain pairs of top-bottom features belonging to known outfits. The memo-
ries reflect the feature disentanglement provided by the encoders of the autoencoder. That is, in
Mcolor we only store pairs of color features (ϕT

color
,ϕB

color
) and in Mshape pairs of shape features

(ϕT
shape

,ϕB
shape

).

At inference time, a top image is fed as input to our recommendation system and encoded into
two latent vectors ϕT

shape
and ϕT

color
, using the shape and color encoders. The two features are
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compared via cosine similarity against the respective memories, acting as read keys to find the
most relevant locations.

We retrieve the best K elements from both memories, retaining only the bottom items. We then
combine such bottom features from both memories together with an outer product, creating all
K2 possible combinations of shapes and colors. These combined features represent different ways
of matching shapes and colors, which can be decoded into actual garment images. However, to
perform recommendations we need to suggest existing garments, so we simply retrieve the train-
ing sample with the highest cosine similarity according to the concatenation of shape and color
features.

Among the K2 generated pairs, we establish a re-ranking based on the frequency of co-
occurrence of color and shape labels (c, s ) between top and bottom pairs that belong to a same
outfit in the training set. The idea behind this re-ranking strategy is that the MANN is useful to ex-
tract good modalities from a pure content-based point of view. By re-ranking using co-occurrence
frequencies, we are also taking into account how common these outfits are according to fashion
trends.

Memory Controller Training. In order to fill up the two memories, we train two separate
memory controllers,Cshape andCcolor . The training process for both controllers is identical, so we

will refer to a generic memory M and generic features (ϕT ,ϕB ) without any attribute subscript.
Given a top attribute representation ϕT , the memory outputs K bottom features ϕB

k
for k = 1...K .

Since the memory should be able to propose an attribute (either shape or color, depending on the
memory), we compare the features of all proposed items against the corresponding feature of the
ground-truth bottom ϕ̄B using a cosine distance:

dk = 1 −
ϕB

k
· ϕ̄B

‖ϕB
k
‖ · ‖ϕ̄B ‖

,k = 1, . . . ,K . (5)

As in [7, 21], we take the minimum error and we feed it to the memory controller, which is
trained to write samples in a non-redundant way, storing only relevant information necessary to
obtain a satisfactory recommendation. The advantage of considering only the best recommenda-
tion is that the network is not penalized for recommending a variety of different outputs, while
instead it is enforced to recommend at least an item similar to the ground truth.

A memory controller is a simple linear layer with sigmoidal activation that emits a writing prob-
ability pw , taking as input the minimum distance d∗ = min{dk }. A sample gets written in memory
when such probability exceeds a given threshold thw . Previous works in the literature [7, 21] have
trained similar memory controllers to maximize the writing probability when the error is high,
i.e., when the sample should be added in memory to obtain a better prediction, and minimizing
the writing probability when the output is already satisfactory, thus avoiding redundancy. Such
behavior is obtained minimizing the following controller loss:

Lcontroller = d
∗ · (1 − pw ) + (1 − d∗) · pw . (6)

The controller loss in this form, however, suffers from two issues: (1) dependence on the distribu-
tion of d∗, which reflects on the number of samples getting written in memory, and (2) collapsing
to trivial solutions where pw is always 0 or 1. Both issues arise when d∗ does not follow a normal
or uniform distribution, i.e., when there is a strong unbalance toward either low or high distances.

To avoid these issues, we extend this loss in the following way. First, we scale the cosine dis-
tances in [0, 1] and we apply a normalization dividing each d∗ by an estimate of the maximum
distance d∗max , accumulated during training. This has the effect of stretching all errors to cover
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the whole [0, 1] interval, making the second term in Lcontroller tend to zero when d∗ is suffi-
ciently high. Second, we add a penalty term to avoid collapsing to trivial solutions. To do so, we
accumulate the N th percentile ofd∗, which we denote withpercN , averaging across batches. We as-
sume that samples with errors higher than such value should be written in memory, and therefore
we penalize the model when their writing probability is lower than thw . Vice versa, we still add
the penalty when a sample is written but the corresponding d∗ is lower than the N th percentile.
The penalties can be formalized as margin losses with margin m:

Lpenalty =

⎧⎪⎪⎨
⎪⎪
⎩

thw − pw +m i f pw < thw & d∗ > percN

pw − thw +m i f pw > thw & d∗ < percN ,
(7)

where we make the threshold thw adaptive by setting it equal to the estimate of the N th percentile
of d∗, normalized by d∗max :

thw =
percN

d∗max

. (8)

The final controller loss that we adopt is therefore

L∗controller =
d∗

d∗max

· (1 − pw ) +

(
1 − d∗

d∗max

)
· pw + α · Lpenalty . (9)

In our experiments we usem = 0.3, α = 10 and set the distance threshold to the 99.5 percentile
of the distance distribution.

3.3 Training Details

We train our model in two separate steps. First, we train the autoencoder to learn disentangled
features for shape and color, and then we train the memory controllers to store nonredundant
samples. Separating training into two phases is necessary since we do not want the representations
of stored samples to change during training. During the training phase or the memory controllers,
to avoid storing incorrect samples at the first iterations, we reset the memory after each epoch
by emptying it and re-initializing it with K random samples, i.e., the number of samples that we
want to suggest. When the controller is fully trained, we fill the memory from scratch by iterating
over the training samples for an additional epoch. We observed that, once convergence is achieved,
different initializations do not lead to substantial differences in the final results.

We train our model on two different datasets, IQON3000 [29] and FashionVC [28], as outlined
in Section 5. Our final memory modules, trained on the IQON3000 dataset, are filled with 9,282
pairs for color and 2,157 pairs for shape, whereas the memories trained on FashionVC are filled
up with 399 pairs for color and 262 pairs for shape. The different number of pairs in the memories
filled with the two datasets is given by the different sizes of the datasets: IQON3000 has 308,747
outfits; on the contrary, FashionVC has just 20,726 outfits.

As for the components of our model, the autoencoder is composed as follows. The encoder has
4 convolutional layers with kernel size 3× 3, padding 1, and number of channels equal to 8, 16, 32,
and 64. Each layer has a ReLU activation and is followed by a max-pooling operation. The resulting
feature is a 9 × 9 × 64 feature map, which is flattened into a 5, 184-dimensional vector and fed to
the two MLP encoders, both with a hidden dimension of 1,024 and an output of 256. Again, all
outputs are followed by ReLU activations. The MLP decoder and the convolutional decoder follow
an inverse structure, replacing convolutions with transposed convolutions with stride 2.

For training both models we use the Adam optimizer with a learning rate of 0.005.
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4 OUTFIT COMPATIBILITY ESTIMATION

To provide a more comprehensive evaluation with reference to the state of the art, we show that
our model can be easily adapted to address a task of outfit compatibility estimation. Even if closely
related, this task is slightly different from the task of garment recommendation, since instead of
proposing a compatible bottom for a given top, we need to establish the compatibility of a given
outfit. Since our model is capable of providing a ranked list of bottoms after accessing memory via
top similarity, we exploit such similarity to obtain a compatibility score.

In detail, for either the color or shape modality, we want to obtain a compatibility score c for
an outfit o = (t ,b) composed of a top t and a bottom b. We first access memory via top similarity
using t :

sT
i =

ϕT · ϕT
i

‖ϕT ‖ · ‖ϕT
i ‖
, i = 1, . . . , |M |, (10)

where ϕT is the feature corresponding to the top garment and ϕT
i is the i − th memory key. This

gives us a way of ranking each memory entry, according to top similarities sT
i . We then compare

b against each bottom in memory to find sufficiently similar items. We consider only bottoms
with a bottom similarity sB higher than a chosen threshold thB by building a positive bottom set
PB = {i ∈ 1, . . . , |M | i f sB

i > thB }.
Finally, in order to obtain the compatibility score c , we simply take the top similarity sT of the

highest-ranked memory entry with bottom belonging to PB . We perform this operation for both
color and shape memories and simply add the two scores together to get a final compatibility.

5 EXPERIMENTS

In this section, we report experiments to demonstrate the compatible garment recommendation
capabilities of our system. In addition, to provide a more comprehensive comparison with the state
of the art, we also adapt our model to perform outfit compatibility estimation and complementary
item retrieval. In the following we provide a brief overview of these experimental settings and
the metrics we used, explaining how our model can be modified to address such tasks, along with
a description of the datasets we use to carry out experiments. Finally, a detailed quantitative and
qualitative analysis is reported and a series of ablation studies underline the contribution of several
modules in our recommendation network.

5.1 Datasets

The evaluation of the proposed method is extensively performed on the real-world datasets
IQON3000 [29] and FashionVC [28].

IQON3000. This dataset is composed of garment images and metadata. Garments are grouped
by outfit and are associated to different users. These data were collected from IQON, a Japanese
fashion community website, in which members could mix fashion items in order to create new
outfits. Once created, an outfit could be shared with other users, and they could express their
preferences and create new ones in turn. Each outfit is paired with a csv file that contains the
metadata of the fashion apparel: a “setID,” which is the unique identifier of the outfit; “setUrl,” the
URL of the outfit; “likeCount,” the number of likes that the outfit received; “user,” a unique identifier
that identifies the user; and “items,” the list of all the garments that compose the outfit, and for each
of them, the authors provide the URL of the image, price, category, and color; an item id; an item
name; and a description. The dataset includes 308,747 outfits created by 3,568 users with 672,335
fashion items. Each fashion item was also labeled with a category and a color (among 16 categories
and 12 colors, respectively). The authors also provide train, validation, and test splits specifying
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user id, top id, bottom id, and negative bottom id, which corresponds to a different bottom chosen
randomly. We adopted these settings in our experiments.

FashionVC. In our experiments we also involved the FashionVC [28] dataset. The dataset is
composed of images and contextual metadata. Specifically, the images are grouped by tops and
bottoms, whereas the metadata are composed of id, title, and category. The id is a unique identifier
that identifies a garment; the title is a brief description of the garment, for instance, “Balenciaga

Stretch-leather skinny pants”; the category expresses in which category the garment belongs, for
instance, “Women’s Fashion>Clothing>Pants>Balenciaga pants.” The authors also provide top and
bottom pairs that compose an outfit. These data were collected from Polyvore. Polyvore is a website
that allows users to mix and match different garments in order to create new outfits. These outfits
can be shared with other members, who can express their preferences about them. The dataset
is composed of 20,726 outfits, which include 14,871 tops and 13,663 bottoms. Differently from
IQON3000, FashionVC does not include any metadata regarding color. Regarding train, validation,
and test splits, we adopted the same split proposed by the authors in our experiments: 80% for
training, 10% for validation, and 10% for testing.

On Dataset Biases. Since IQON3000 [29] was crawled from the Japanese website IQON, data
will be biased toward the Japanese culture and outfits will reflect Japanese taste. FashionVC [28],
instead, is based on data extracted from Polyvore, which is an American fashion portal and has a
wider user base. Different dataset biases, however, will likely reflect a bias in the model. The mem-
ory controller in fact will store pairs of outfits based on their occurrence in the dataset. Nonetheless,
two important remarks have to be considered. First, the memory controller is trained to store a
sample, i.e., an outfit, when the previously stored ones are not sufficient to perform well. This
makes the model able to deal with outliers, intended as dressing modalities that do not follow the
bias in the training data. Our model thus is able to model the overall preferences of the users, both
the frequent ones and the less common ones. Second, in a real-world context, making the sugges-
tions adhere to specific tastes (or biases) would correspond to be coherent with the collection of a
given store and the tastes of its customers.

5.2 Tasks and Metrics

In the following sections, we will perform the evaluation of our method using multiple metrics
depending on the task. Here we briefly introduce those metrics, referring to the relative task.

Compatible Garment Recommendation. For the task of compatible garment recommenda-
tion, we follow the experimental settings of [7]. We compute Accuracy@K for category and color
classification while varying the number K of recommended garments. We compute the fraction of
recommendations that have at least one sample among the first K suggested items with the same
category and/or color of the ground truth.

As in [7], we also use mean Average Precision (mAP) to establish the ranking quality of the
recommendations suggested by our model. We consider as correct each bottom for which the
category and/or color matches the one in the ground truth, varying the number of recommended
items K . For both metrics, category and color labels are derived from the IQON3000 annotations.

Outfit Compatibility Estimation. As detailed in Section 4, our model can be adapted to per-
form outfit compatibility estimation. To evaluate this task, we use the Area Under the Curve

(AUC) metric. Here we follow [28, 29, 34] and compute the fraction of times that an outfit, consid-
ered as positive by a user, is preferred over a random negative one. In other words, we keep track
of how often the system prefers items that are appreciated by a user over the ones that he/she does
not like.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1s, Article 39. Publication date: January 2023.



39:12 L. De Divitiis et al.

Table 1. Accuracy Results for Category and Color Classification on the IQON3000 Dataset

Num Items 5 10 20 30 40 50 60

Category × Color
Ours 46.76 67.00 80.57 86.15 89.08 91.12 92.61

GR-MANN [7] 30.00 45.00 59.00 67.00 71.00 75.00 78.00

Category
Ours 78.99 87.01 91.84 94.10 95.32 96.11 96.67
GR-MANN [7] 81.00 89.00 93.00 95.00 96.00 96.00 97.00

Color
Ours 58.70 76.80 87.62 91.52 93.42 94.78 95.76
GR-MANN [7] 58.00 73.00 85.00 91.00 94.00 96.00 97.00

Table 2. Accuracy Results for Category and Color Classification on the IQON3000

Dataset Using Bottom Garments as Queries and Proposing Tops

Num Items 5 10 20 30 40 50 60

Category × Color 36.96 59.91 75.11 81.31 86.68 89.86 90.58

Category 59.95 75.73 83.70 88.15 93.06 95.93 96.35

Color 60.97 78.58 89.73 92.36 93.24 93.70 94.03

Complementary Fashion Item Retrieval. We extend the evaluation for outfit compatibility
estimation by also evaluating our model for complementary fashion item retrieval, as in [28, 29].
We compute the Mean Reciprocal Rank (MRR) metric. For each top, we randomly select K bot-
toms as ranking candidates, among which only one is labeled as correct in the ground truth. Since
we need to rank K given outfits instead of proposing a ranked list of bottoms as in the mAP evalu-
ation, we assign a compatibility score to each outfit similarly to the AUC evaluation. We use such
scores to sort the candidates. To compute the MRR, we average for each sample the inverse of the
ranked position (i.e., the reciprocal rank), where the correct ranked position is compared against
the ground truth.

5.3 Experimental Results

In the following we present the results for the tasks of garment recommendation, compatibility es-
timation, and complementary fashion item retrieval. Our focus is on the capability of our model to
recommend bottom garments to complement the given top, but we show that our model performs
well also for compatibility tasks, obtaining state-of-the-art results.

Compatible Garment Recommendation Results. We present a quantitative analysis of our
method for the task of compatible garment recommendation in terms of accuracy for category
and/or color. We use the IQON3000 dataset for garment recommendation, as in [7], since it provides
both labels for category and color. Our model, which disentangles color and shape features, well
adapts to this kind of evaluation, since our two modalities loosely correspond to the provided
labels. In fact, when modeling shapes, we are learning (without direct supervision) to represent
information that is closely tied to the category annotations in the dataset.

To first evaluate the method, we compute accuracy over both color and category domains sep-
arately. Then we perform a cross-domain evaluation as described in [7]. Results are shown in
Table 1. Here, we can see that our method performs particularly well when using the combination
of the two disentangled features, showing that our model has learned to extrapolate meaningful
representations from the two domains. Note that this sub-task requires to correctly predict both
category and shape at the same time, making it considerably harder than predicting one single
modality. Nonetheless, our method outperforms GR-MANN [7] by a considerable margin. Using
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Fig. 5. Mean Average Precision for garment retrieval using both category and color on the IQON3000 dataset.

only one modality instead, it can be seen that our method performs comparably with the baseline.
Also note that the original authors do not report decimal values for their results. These results
show that our method was able to learn to correctly disentangle the two pieces of information
while preserving single domain discriminatory power.

As a sanity check, we retrained our model to perform the same task but inverted the queries
in order to suggest tops given a bottom. We retrain the memory controller inverting the data and
we then populate a new memory mapping bottoms to tops. For training and testing we adopt the
usual IQON split. Results are shown in Table 2. It can be observed that the accuracy, varying the
number of suggested items, follows a similar trend to the one in Table 1. Interestingly, though,
category accuracy is lower than color accuracy consistently for the whole experiment, indicating
that modeling top categories is harder than bottom categories.

We also perform an analysis in terms of ranking of the proposed bottoms. Following [7], we re-
port the mAP of the ranking proposed by our model on IQON3000, varying the number of retrieved
garments. That is, given a top, we want to retrieve the firstK bottoms for which both category and
color should be correctly predicted. Results are shown in Figure 5. It can be seen that our proposed
method significantly performs better than [7] for each number of retrieved items, gaining from 4
to 8 points. Moreover, our method is also more robust when predicting a high number of propos-
als as the mAP does not decrease as fast as for GR-MANN [7]. The explanation for this behavior
can be found in the variety of the bottoms proposed by the model. In fact, since the memory is
trained to store non-redundant outfits, there will be a limited amount of bottoms that share the
same category and color among the proposed ones. As a consequence, this will limit the number
of garments to be retrieved, thus reducing the decreasing effect of the mAP that happens when
relevant garments are proposed with a bad ranking. In addition, this confirms that on average, the
model is capable of proposing the correct bottom with just a small amount of recommendations.

We also added in Figure 5 a Random baseline, obtained by randomly shuffling the K2 proposals
of our architecture and taking the first K . This helps to better define a lower bound for the task
and thus to allow a better comparison.

Outfit Compatibility Estimation Results. We apply the strategy outlined in Section 4 to
assign compatibility scores to outfits. This allows us to assess the capabilities of our model also
for the task of outfit compatibility estimation. We compare compatibility scores for outfits in both
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Table 3. Performance Comparison among Different Approaches in Terms of Area under

the Curve (AUC) for IQON3000 (left) and FashionVC (Right)

Method AUC

Baselines

POP-T [29] 60.42
POP-U [29] 59.51
RAND [29] 50.14
Bi-LSTM [11] 66.11
BPR-DAE [28] 69.12
BPR-MF [25] 78.67
VBPR [12] 80.88
TBPR [29] 81.02
VTBPR [29] 81.94
GP-BPR [29] 83.21
PAI-BPR-V [26] 84.13
PAI-BPR-T [26] 84.32
PAI-BPR [26] 85.02

Proposed
Shape 80.77
Color 81.61
Combined 88.08

Method AUC

Baselines

POP [28] 42.06
RAND [28] 50.94
RAW [28] 54.94
IBR [23] 60.75
ExIBR [23] 70.33
BPR-DAE [28] 76.16

Proposed
Shape 81.37
Color 79.48
Combined 88.13

the IQON3000 and FashionVC datasets. In Table 3 (left) we compare the AUC obtained by our
model against several competing methods from the state of the art. For our model we propose
three different approaches, i.e., using scores derived from only color or shape or by combining
them together, summing the two compatibility scores. Interestingly, using a single modality does
not suffice to obtain a higher AUC than several baselines. On the other hand, when combining the
two scores together, we observe a 10% improvement, yielding state-of-the-art results. The same
kind of behavior can be seen for FashionVC in Table 3 (right). Here, even using color or shape
alone, our method is able to obtain a higher AUC compared to the best competing method.

Complementary Item Retrieval.

Here we study how our model performs for complementary item retrieval.
Following [29] and [28], we compute the MRR of the positive bottom among K candidates. Since

a candidate can be any bottom in the training set and may be missing from memory, we compute
the ranking of the candidates using the compatibility score described in Section 5.3. In Figure 6
we report the MRR for different K values for both the IQON3000 and FashionVC datasets. As in
the outfit compatibility evaluation, we propose the three variants with only color, with only shape,
or combining both. In both datasets, our combined and color-based methods outperform the state
of the art. The shape-based model instead exhibits different behaviors for the two datasets. In
IQON3000 the MRR is much lower than the other variants and even lower than some BPR base-
lines. On FashionVC, instead, the shape-based model is able to slightly outperform the combined
version of our model with a large number of items as candidates. We attribute this difference to the
higher complexity of the IQON dataset, which has a much larger variability in shapes compared
to FashionVC.

5.4 Ablation Studies

We carry out a series of ablation studies to demonstrate the effectiveness of the architectural
choices. We trained three variants of our model: Ours-NoPenalty, a memory network without the
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Fig. 6. Mean Reciprocal Rank (MRR) for garment retrieval for the IQON3000 (left) and FashionVC (right)

datasets.

penalty term Lpenalty in the controller loss of Equation (9); Ours-ConcatFeat, a memory network
with a single memory obtained by concatenating color and shape features; and Ours-SingleFeat, a
model with no shape and color distinction. For the first two variants, Ours-NoPenalty and Ours-

ConcatFeat, we used the same autoencoder as in our standard model, while for Ours-SingleFeat the
whole model is re-trained from scratch. All the ablations are performed on IQON3000 and evalu-
ated for the task of compatible garment recommendation varying the number of suggested items,
as in Table 1.

First, we observed that Ours-NoPenalty did not manage to converge to meaningful solutions.
The controller without the penalty term is not capable of handling samples due to distances d∗

not being normally distributed, as discussed in Section 3.2. The training phase always yields a
controller that stores in memory either all samples or none. This confirms the lack of flexibility of
the controller loss as introduced in previous works such as [7, 20] and the need for a more complex
formulation.

In Table 4 we report the results for the two other ablations. We compare them to our standard
approach, which we dub here as Ours-Full. Both variants achieve lower results compared to the
standard approach, with the notable exclusion of Ours-ConcatFeat for a large number of suggested
items, where the difference with Ours-Full is minimal. The memory in the Ours-ConcatFeat model
is trained by letting a single controller decide whether to store pairs of shape and color features
in memory. The two features, however, are kept separate and are concatenated when perform-
ing memory access. Thanks to this ablation, we show that having two separate memories adds
expressiveness to the model, allowing it to retrieve meaningful samples from memory for both
modalities.

A lower drop in accuracy is reported when shape and color disentanglement is completely re-
moved from the model. In fact, when training Ours-SingleFeat, we kept only a single MLP encoder
and halved the input size of the MLP decoder. Since we now have only a single feature, we trained
the autoencoder by removing entirely the triplet losses and retaining only the reconstruction loss
Lr ec . The memory network instead is trained as usual, but using a single memory and a single
controller to store samples, similarly to Ours-ConcatFeat. From Table 4 it can be seen how this
deeply affects the accuracy of the model, confirming the benefits of learning disentangled features.
The accuracy drop for this model is due to a lack of diversity in the recommendations and confirms
that using disentangled features to perform separate color and shape recommendations yields a
more diverse set of proposed bottoms.
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Table 4. Ablation Study

Num Items 5 10 20 30 40 50 60

Category
×

Color

Ours-Full 46.76
¯

67.00
¯

80.57
¯

86.15
¯

89.08
¯

91.12 92.61
Ours-ConcatFeat 42.37 62.49 78.19 85.13 88.66 91.21

¯
92.78

¯
Ours-SingleFeat 39.52 54.59 70.27 78.35 82.68 85.12 86.56

Category
Ours-Full 78.99

¯
87.01

¯
91.84

¯
94.10

¯
95.32

¯
96.11

¯
96.67

¯
Ours-ConcatFeat 76.70 86.50 91.53 93.80 94.99 95.91 96.51
Ours-SingleFeat 73.58 80.73 87.06 86.94 88.15 88.88 89.34

Color
Ours-Full 58.70

¯
76.80

¯
87.62

¯
91.52

¯
93.42

¯
94.78 95.76

Ours-ConcatFeat 54.03 71.46 85.04 90.54 93.13 94.94
¯

96.00
¯

Ours-SingleFeat 48.92 61.74 75.78 82.84 86.27 88.11 89.13

We report the accuracy of our compatible garment recommendation system varying the architecture.

Ours-Full denotes the standard architecture. Ours-ConcatFeat refers to the architecture with a single

memory populated with the concatenation of color and shape features. Ours-SingleFeat is an architecture

with a single memory and no color-shape separation.

Fig. 7. T-SNE embeddings for (a) category and (b) color features of the bottoms in the test set.

5.5 Qualitative Results

Here we present a qualitative study of the features generated by our system in terms of both
category and color. As our research aims to give bottom recommendations for a given top, we
focused the qualitative analysis on these two questions: (1) how are the features of all the bottoms
in the test set of the IQON3000 dataset distributed w.r.t. their category and color? and (2) given
a bottom, what are the categories and the colors of the closest bottoms in each feature space?
The first question allows us to study the feature space distributions and thus to understand how
the two feature spaces are organized and assess the quality of the two learned embeddings. The
second question, on the other hand, serves the purpose of understanding how descriptive our
features are and how well they may perform for tasks such as image retrieval where similarity
plays an important role.

Feature Distribution. To understand the feature distribution w.r.t. category and color of the
test bottoms, we performed a T-SNE analysis on the features [19]. Figure 7 shows the T-SNE of
category (Figure 7(a)) and color (Figure 7(b)), respectively. In Figure 7(a) we can see how bottoms
of similar categories are put close to each other in the embedding space. Jeans and trousers are
put close to each other, whereas skirts and shorts are more distant. Focusing on skirts, we can
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Fig. 8. Reconstruction of shape and color feature combinations applied to jittered and rotated images of tops

and bottoms.

see how skirts of similar shapes are indeed closer to each other w.r.t. other skirts with different
shapes (e.g., long skirts and short ones). Similarly, Figure 7(b) shows us how bottoms are placed
in the color feature space. It is clearly visible that bottoms of similar colors are placed in the same
region of the space, with region colors going from dark tones to brighter ones. Note that, despite
the dataset only containing 12 colors, the system is trained on the actual colors of the bottoms and
thus the underlying space is able to reflect the diversity of a greater number of colors. As a result,
we were able to confirm that the system is able to learn feature embeddings that correctly model
both category and color characteristics of the garments.

To further understand the disentanglement degree, we also performed a qualitative analysis
on the features generated by each modality encoder on the variation of shape and color while
training the network. As described in Section 3.1, our system performs several augmentations to
learn disentangled representations. In Figure 8, we show the reconstruction of top and bottom
features, where both rotation and color jitter is applied. Features are extracted from the respective
autoencoders, merged, and decoded by our decoder to produce a visual result of the reconstructed
garment. The figure serves two purposes: to show how our augmentations work and to evaluate
how disentangled the two modalities are. In the right part of the figure we can see how the recon-
structions are able to preserve both shape and color, while also preserving jitter and rotation. The
reconstruction is essentially a new garment that preserves the properties that have been captured
by the features, confirming once again that the two embeddings are correctly disentangling the
two modalities.

Feature Similarity. For tasks such as image retrieval, leveraging an embedding that ensures
a good similarity among features of similar items usually reflects in good retrieval performances.
This is due to the fact that, to perform retrieval given an input image, results are given by looking
for images for which features are close to the input one for a certain distance metric, such as the
cosine distance. For this reason, in Figure 9 we present the qualitative results of image retrieval
given a test bottom. Note that we are not using the memory in this experiment, just bottom features.
Figure 9(a) shows the retrieval results of 10 bottoms in the category feature space ordered by
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Fig. 9. Retrieval results using (a) category and (b) color for 10 bottoms (first column).

Fig. 10. Retrieval of bottom garments given a top using IQON3000. From left to right : The first column rep-

resents the query top; the second one is the ground-truth bottom; the third shows the bottoms retrieved by

our network. Results are kept in the order given by our memory network. In this example the model has to

retrieve 10 bottoms.

similarity, while Figure 9(b) shows the result for the same number of bottoms in the color feature
space with the same ordering. Starting from the category, we can see how the input image in the
first column produces bottoms that have a similar shape. Skirts for the first and last examples
produce other skirts that are almost identical in the first results except for the color, which is a
desired property that tells us that the two modalities have been well disentangled by the system.
Another good example is given by the second and third bottoms, where, ignoring the color, similar
results preserve the peculiar properties of the shape given by the fabric.

Similarly, in Figure 9(b) we can see how bottoms of similar colors are retrieved. With some ex-
ceptions where the brightness of the image is dominant over the color, such as for the last bottom,
usually all retrieved items possess a color similar to the queried one. Similarly to the previous
case, the color embedding does not consider the shape, as we can see in the fourth example, where
trousers, jeans, skirts, and shorts are all correctly considered similar because of their color, con-
firming once again that the two modalities have been correctly disentangled to a good extent.

We also performed a qualitative analysis of garment retrieval using the two datasets IQON3000
and FashionVC. In this analysis we used tops, from the test set, as inputs. Figure 10 shows the
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Fig. 11. Retrieval of bottom garments given a top using FashionVC. From left to right : The first column rep-

resents the query top; the second one is the ground-truth bottom; the third shows the bottoms retrieved by

our network. Results are kept in the order given by our memory network. In this example the model has to

retrieve 10 bottoms.

results given by our system using the IQON3000 dataset. The aim of our memory network is to
suggest bottoms that preserve the correct shape and color of the ground truth, but in addition
we want variation, in terms of shapes and colors, in the proposed results. We can see that the
system both proposes garments that preserve the characteristics of the ground-truth bottom and
bottoms that differ for shape/color from the ground truth. Looking at the first row of Figure 10,
the top input is paired with a gray and black skirt. We can see that our system mostly proposes
skirts of similar shape and suitable color variations. The same happens for the jeans in the second
row and for the trousers in the third row. In these cases, the recommendations are close to the
ground truth according to color but still offer different styles to complement the top. In the last
row we can observe how the system suggests a variety of bottoms, e.g., proposing both skirts and
trousers while mostly retaining similar color tonalities to the ground truth. The same evaluation
was performed on the FashionVC dataset as shown in Figure 11. The system preserves the same
behavior of the results shown above; i.e., the retrieved bottoms preserve the correct shape and
color of the ground truth but introduce variation in the proposed results.

Quantitative results can also be discussed in light of the qualitative properties of the features. In
fact, experiments have shown a good improvement when both color and shape features are used
together. As Figures 7 and 9 suggest, both embeddings exhibit good descriptive power in their
respective domain. Thus, it is not unexpected that, when used together, they are able to produce
better proposals that are correct in both category and color.

6 CONCLUSIONS

In this article we have presented an approach based on the combination of color/shape feature
disentanglement and the usage of external memory modules to store pairing modalities between
top and bottom fashion items. We have extended the common controller loss to train such mem-
ory modules by addressing issues arising from uneven data distributions, obtaining compact and
representative memories. The usage of external memories with disentangled representations has
led to significant improvements over the state of the art for compatible garment recommendation.
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