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Transformer-based Graph Neural Networks for
Outfit Generation

Federico Becattini, Federico Maria Teotini, and Alberto Del Bimbo

Abstract—Suggesting complementary clothing items to compose an outfit is a process of emerging interest, yet it involves a fine
understanding of fashion trends and visual aesthetics. Previous works have mainly focused on recommendation by scoring visual
appeal and representing garments as ordered sequences or as collections of pairwise-compatible items. This limits the full usage of
relations among clothes. We attempt to bridge the gap between outfit recommendation and generation by leveraging a graph-based
representation of items in a collection. The work carried out in this paper, tries to build a bridge between outfit recommendation and
generation, by discovering new appealing outfits starting from a collection of pre-existing ones. We propose a transformer-based
architecture, named TGNN, which exploits multi-headed self attention to capture relations between clothing items in a graph as a
message passing step in Convolutional Graph Neural Networks. Specifically, starting from a seed, i.e. one or more garments, outfit
generation is performed by iteratively choosing the garment that is most compatible with the previously chosen ones. Extensive
experimentations are conducted with two different datasets, demonstrating the capability of the model to perform seeded outfit
generation as well as obtaining state of the art results on compatibility estimation tasks.

Index Terms—Transformer, Graph Neural Networks, Outfit Generation

✦

1 INTRODUCTION

Fashion is one of the most important industries in the
world, moving very large amounts of money with thou-
sands of customers and field operators. Choosing garments
to create a good looking outfit is a very important task in
the fashion field, but it is a difficult one: it involves many
complex concepts like style and visual composition exper-
tise, creativity, cultural and social understanding, trends,
etc., and they all need to be balanced to make sure that the
resulting outfit is indeed aesthetically appealing.

Outfit creation is an ubiquitous task and, with the rapid
growth of online fashion retailers and fashion related social
networks (e.g. Instagram), it became a fundamental task,
often carried out by entire company departments of fashion
experts.

Every architecture needs to support two notions in order
to put together a good outfit:

• The similarity notion, that is when two garments are
similar to each other and possibly interchangeable.

• The compatibility notion, meaning that the fashion
items composing the same outfit should aesthetically
be compatible with each other.

Previous studies [1], [2] focused on learning compatibil-
ity metrics between pairwise items (Figure 1 a); these kind
of architectures cannot model the complex relations between
outfit items since each pair is treated independently. Some
works [3] attempted to represent an outfit as an ordered
sequence of garments (Figure 1 b) and using Recurrent
Neural Network (RNN) to model compatibility. This kind
of representation, however, is a forcing as it is reasonable to
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Fig. 1. Different representations for an outfit composed by four different
items: (a) the pairwise one, (b) the ordered sequence one, and (c) the
graph one.

consider an outfit as a set, thus without a specified order,
instead of as a list. To overcome these representation limita-
tions, further architectures [4]– [5] explored the concept of
representing an outfit as a graph (Figure 1 c).

In this paper a new architecture is proposed, Transformer-
based Graph Neural Network (TGNN), aimed at generating
new outfits starting from a garment or a set of garments and
thus allowing even inexperienced people to create their own
outfit. TGNN is based on two complementary architectures:
the Transformer [6] and Graph Neural Network [7], [8].
Transformer is a kind of encoder-decoder architecture [9],
[10] born in the Natural Language Processing (NLP) field
and it is the base architecture for many state-of-art NLP
models. GNN proved successful in modeling complex
relations in very large graphs [11], [12] and is one of the
most researched fields at the time of writing.

The GNN part of TGNN is aimed at learning context
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Fig. 2. The item relation graph. There are five different highlighted outfits,
each connected to another at least through one or more shared items.
In particular, each item is linked to all the other ones appearing in the
same outfits.

features from this graph. The Transformer architecture, on
the other hand, is employed for its outstanding performance
on sequences modeling. Born to overcome the recurrent
nature of architectures like LSTM [13] and GRU [9], the
Transformer is capable of predicting the next item in a
sequence, given the previous ones; this ability is a perfect
fit for the outfit generation task starting from a seed: every
predicted garment has to be compatible with the seed and
the already predicted garments.
It has been proved that, under some constraints, GNNs can
be seen as Transformer encoders [14]. TGNN uses this con-
cept to integrate these two architectures and to successfully
model the compatibility in fashion outfit generation.

To summarize, the main contributions of this work are:

• The proposal of Transformer-based Graph Neural
Network (TGNN), a new architecture aimed at
seeded outfit generation, which can better capture
the complex relations among multiple items in an
outfit.

• The development of an hybrid between Graph Neu-
ral Networks and Transformer encoders, treating the
nodes’ neighborhoods as interlinked unordered se-
quences.

• Experimental results on widely used evaluation tasks
demonstrate the effectiveness of the developed archi-
tecture over other previous state-of-the-art ones.

• The introduction of a new evaluation task, Seeded
Items Prediction (SIP), to test how good a model is at
iteratively reconstructing a given outfit starting from
one outfit item (the seed).

2 RELATED WORK

Fashion recommendation is a hot topic, for which several
aspects have been studied. The problem has been declined
in many forms, ranging from compatibility estimation [15],
[16], [17], [18], [19], outfit generation [20] to plain simple
recommendation [21], [22] and try-on [23], [24].

Many early works [1], [25]– [26] focus on calculating
a pairwise compatibility metric between garments: for ex-
ample, McAuley et al. [1] extracts visual features to model
human visual preference for a pair of items, Veit et al. [27]
develops a Siamese based network that estimates pairwise

compatibility based on co-occurrence in large-scale user
behavior data, while Lu et al [26] aggregates user preferences
on each item and integrates them with pairwise compatibil-
ity scores. These approaches lack efficiency and accuracy in
real-world usage.

The first work considering a fashion compatibility be-
tween a set of items is Han et al. [3]: here an outfit is
considered as an ordered sequence and fed to a bidirectional
LSTM network to predict a compatibility score. In this
work the Polyvore dataset was also introduced. Vasileva et
al. [2] trains pairwise embedding spaces to learn different
representations for different pairs of categories, that, how-
ever, is not feasible when the number of categories is high.
Furthermore, they also extended and enriched the Polyvore
dataset introducing more challenging evaluation sets.

Some works [4], [5], [28] focused on representing an out-
fit as a graph: in NGNN [4], Cui et al. represented an outfit as
a graph to model complex relations among items which has
been demonstrated to be more effective than pairwise and
sequence representations. In our work we represent outfits
as graphs, treating fashion items as nodes, connected to each
other if they can be combined to compose an outfit. Differ-
ently from prior work, we process such graphs with a model
harnessing the effectiveness of Graph Convolutions as well
as multi-headed self-attention, typical of transformers [6]. To
this end, we integrate the message passing strategy of Graph
Convolutions as a form of attention in the encoder structure
of a transformer model. Transformers have also been used
recently in literature to generate outfit level representations
for compatibility prediction tasks [29].

In addition to visual features, some take advantage of
other kind of information like textual representations [2], [4],
[20], categories [2], [30], and user preferences [30], [26], [31].
Lately, there have been studies [32] aimed at operating in
semi-supervised settings, as creating fully labeled datasets
is expensive and often requires fashion experts’ knowledge.

3 OVERVIEW

Transformer-based Graph Neural Network (TGNN) is a
novel architecture whose objective is to discover new aes-
thetically appealing outfits by picking and combining items
from a collection. When referring to an outfit we refer to a
composition of several garments or accessories of different
categories that can be worn together. For instance, an outfit
can be composed by combining a t-shirt, a skirt, a scarf,
shoes, a bag and a necklace. Starting from an initial gar-
ment seed, TGNN is capable of generating unseen outfits
complementing the given item. TGNN will iteratively chose
garments from a candidate set that are compatible with the
seed and with the other previously chosen garments, until a
stop condition is reached. We make the assumption that the
collection of garments from which to make a recommenda-
tion is fixed.

The TGNN architecture is based on a Transformer net-
work: the encoder block operates on a collection of pre-
defined outfits to learn the complex relations standing be-
tween garments, while the decoder carries out the outfit
generation, conditioning the output with the seed and the
contextual information provided by the encoder.
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Following prior work, we represent an outfit as a graph
clique. Since a single garment can belong to more than
one outfit, the collection of pre-defined outfits is naturally
modeled as a graph, connecting such cliques through nodes
belonging to more outfits. The encoder blocks in TGNN
are therefore a special kind of Graph Neural Network that
adapts the standard transformer encoder to graph data
structures.

3.1 Notation and Problem Definition

Let O be a collection of pre-defined outfits. Each outfit oi ∈
O is composed of a combination of ni garments gi,j with
j = 1, ..., ni belonging to a set G, i.e. oi = {gi,1, · · · , gi,ni}.
Each item belongs to a distinct fashion category, which we
identify as C(gi,j). Since the same garment can belong to
several different outfits, we denote with O(gi) := {oj | gi ∈
oj} the set of outfits in which the item appears. Every
outfit might be composed of a different number of garments,
depending on how many fashion categories have been used.

In order to build the data structure representing the
collection of outfits, we provide the following definitions.

Definition 3.1 (Outfit Relation Graph). An Outfit Relation
Graph (ORG) is an undirected graph whose nodes are
outfits and edges exist between two nodes if the linked
outfits share at least one garment. Formally, GO = (V, E)
such that

V ⊆ O

E = {(oi, oj) | oi ∩ oj ̸= ∅ , i ̸= j}

Definition 3.2 (Item Relation Graph). An Item Relation
Graph (IRG) is an undirected graph whose nodes are gar-
ments and edges exist between two nodes if the linked
garments belong to the same outfit. Formally, GG = (V, E)
such that

V ⊆ G

E = {ei,j := (gi, gj) | O(gi) ∩O(gj) ̸= ∅}

When dealing with an IRG, the direct neighborhood Ni =
{gj | gj ∈ V, ei,j ∈ E} of node gi is assumed to contain gi
itself, that is, an IRG is an undirected graph with self edges.
An example of Item Relation Graph is shown in Fig. 2.

Definition 3.3 (ORG to IRG induction). An ORG can induce
an IRG, meaning, an IRG can be built starting from an ORG.
Formally, given an ORG GO = (V, E), its induction GO =
(V , E) is an IRG such that

V = {gi | O(gi) ∩ V ̸= ∅}

E = {ei,j := (gi, gj) | gi, gj ∈ V ,O(gi) ∩O(gj) ̸= ∅}

Based on these concepts, we define the problem of
Seeded Item Prediction as the task aimed at generating com-
plementary items to compose an outfit, based on a garment
seed and on an IRG GG . A garment seed is a sequence of
garments appearing in GG , such that they do not belong to
the same outfit, i.e., they are not linked. Formally

φ = {gs,1, · · · , gs,n | gi ∈ V , ei,j /∈ E ∀ i ̸= j}

Fig. 3. The architecture of TGNN, here visualized during computation at
time step t = 2 with a garment seed φ of size 2. The garment seed with
the previous generated garment ĝ1 and E are fed into the decoder part.
The results will become the next outfit garment ĝ2.

4 METHODOLOGY

Let GG be an IRG, φ a garment seed, and C ⊂ G the garment
candidate set with φ∩ C = ∅ and gω ∈ C, where gω is a fake
garment indicating end-of-outfit, to be used as a stop sign
during generation.

At each time step t, TGNN predicts the next outfit
garment ĝt, given GG , φ and all the previous generated
garments {ĝi}t−1

i=1 . The element ĝt is chosen among the
elements of C(t) = C/{g ∈ O(ĝi)}t−1

i=1 . The outfit generated
by TGNN at the end of step t is:

ô(t) = φ ∪ {ĝi}ti=1 ĝi ∈ C , ĝi ̸= ĝj (1)

This process continues until the model outputs the stop sign
gω . The final outfit is therefore ô(T−1), where T is the total
number of generation steps.

The full TGNN architecture is shown in Fig. 3. The node
embeddings of GG are first passed to a transition layer
whose responsibility mirrors the embedding layer of a stan-
dard Transformer. Moreover it adapts the de-dimensional
embeddings to the hidden dimension dm of the model.
Then, the encoder block operates on this modified graph to
generate a new representation E of all the nodes/garments.

For the decoder part, at first, ô(t) is passed through
another transition layer, then it is fed to the decoder block
along with E. The result is a vector h(t) ∈ Rdm . Then ĝt is
obtained as:

ĝt = arg max
gc∈C(t)

exp(h(t) · τ(gc))∑
gi∈C(t) exp(h(t) · τ(gi))

(2)

that is, the garment gc of the candidate set, whose transition
representation τ(gc) results in the highest similarity with
h(t), among all the candidate set items.

Note that in principle the number of candidates could
become arbitrarily large. However, each element is indepen-
dently fed to the transition layer and compared to the output
of the decoder, as detailed in Eq. 2. This operation can be
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Fig. 4. An example illustration of how attention flows towards the red
node in a Kenc = 2 encoder block. The information first flows from
the green nodes to the red one, then from the blue nodes, through the
green ones, up to the red one. Since Kenc = 2, no attention information
coming from the grey nodes can arrive to the red one.

done easily for large candidate sets, since both operations
can be carried out in parallel. If the number of candidate
items is so high to make parallel computation unfeasible,
an index (e.g. FAISS [33]) could be used to approximate the
similarity computation.

In addition, in this paper we assume to have a closed
collection of garments from which to make recommenda-
tions. Adding new garments would require to update the
graph, which could be done at any time without requiring
any further training.

4.1 Initial Garment Embeddings

Unlike Transformers for NLP [6], which deal with words, it
is not possible to build a garment “vocabulary” containing
all the existing garments. On the other hand, a garment can
be associated with an image and/or a title. This means that
instead of learning the initial embeddings as it is done with
words, in the case of garments, they can be pre-computed
as feature vectors.

In this work, each garment image is fed into an ImageNet
pretrained ResNet50, and the outputs of the last layer before
the classification block are then taken as garment embed-
dings. Since these embeddings are computed by ResNet50,
their dimension is 2048. To compact the features we use
PCA and project them to a lower dimension de.

4.2 Transition Layer

As shown in Fig. 3, there are two transition layers, one for
the encoder block and one for the decoder block. These are
simply feed-forward layers followed by a ReLU activation,
that serve the purpose to learn a meaningful and compact
representation to be fed to each block of the model. In
particular, for the decoder, it also allows to map items in the
candidate set into a semantic space suitable for identifying
complementary items according to Eq. 2.

4.3 Transformer Encoder as ConvGNN

The encoder block operates on a graph containing a pre-
defined collection of outfits, specifically an Item Relation
Graph. The traditional encoder of a transformer is modi-
fied only in its self-attention layer: the idea, adapted from
GAT [34], is to treat each node along with its direct neigh-
bors as an unordered sequence and to apply to each of them
the multi-head scaled dot-product attention mechanism.
These sequences are actually outfits and, as outfits can share
garments, these sequences are linked together. By stacking
multiple of these modified encoder modules, the message
passing nature of spatial ConvGNNs can be leveraged,
meaning that a single garment can attend not only to the
garments with which it shares a common outfit, but also to
other garments belonging to linked outfits.

In Fig. 4, an example of how attention information is
passed between different but linked outfits in an IRG, is
shown.

Formally, referring to the MultiHead attention function
adopted in transformers [6], the multi-head scaled dot-
product attention mechanism calculated for a node gi ∈ Rd

is defined as:
MultiHead(gi,Ni,gi) (3)

that is, the query Q and the value V are set to be equal to gi

while the key K is a |Ni| × d matrix containing the feature
vectors of the neighboring nodes of gi.

4.4 Objective Function

Let o = {g1, · · · , gn} be a predefined outfit and let
GG = (V, E) be an IRG where g1, · · · , gn ∈ V but ei,j /∈
E ∀ gi, gj ∈ o, and C ⊂ G the garments candidate set with
o ⊂ C. Thus, for the triplet (o,GG , C) the objective function
of TGNN can be written as

L(o,GG ,C) = − 1

n

n∑
t=1

logP (gt+1|g1, · · · , gt, GG , C,Θ) (4)

where Θ denotes the model parameters, gn+1 is assumed to
be the end-of-outfit fake garment gω , and P (·) is the prob-
ability of choosing the next correct garment conditioned on
the previously predicted outfit garments, the IRG and the
candidate set.

In one training sample, the i-th ground truth Γi is the
next garment to be produced, that is Γi = gi+1, as shown in
Fig. 5, and Γn = gω .

In this setting, the conditioned probability of Equation
(4) becomes

P (gt+1|g1, · · · , gt, GG , C,Θ) =
exp(h(t) · τ(Γt))∑

gi∈C exp(h
(t) · τ(gi))

(5)

5 EXPERIMENTS

In this section we outline the experimental validation of the
proposed method and the analysis of the obtained results.
In addition, both the network setup and the hyperparameter
values used throughout the experiments are explained.
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Fig. 5. Example illustration of a training sample outfit with five garments
(in blue) and their corresponding ground truth items belonging to the
candidate set. The ground truth for a given item is equal to the next one,
while for the last is the end-of-outfit fake garment.

Fig. 6. An outfit example from the Polyvore dataset [2]

6 DATASET

To perform experimental validation of our approach, we
adopt different versions of the Polyvore dataset [2].

The dataset has been built from the Polyvore website, a
popular social network hub where fashion enthusiasts could
upload, tag and title garment images and create custom
outfits as compositions of these. The crafted outfits, then,
could be shared, commented, liked, but also used as basis
for other new outfits.

An eary version of the dataset was proposed by Han et
al. [3], which is now referred to as the Maryland Polyvore
dataset. This dataset was relatively small (around 20k out-
fits and 160k items), did not contain item categories, and
had some inconsistencies in the test set. To resolve these
issues, Vasileva et al. [2] produced another outfit dataset
based on Polyvore data, referred to as the Polyvore dataset,
with both coarse and finer grained item categories (defined
respectively as “semantic” and “leaf” categories), titles and
descriptions; this dataset is, also, larger than the Maryland
dataset as it contains more than 60K outfits and 360K items.
Moreover, this dataset provides carefully tailored test-train
splits: as some garments appear in many different outfits,
the choice of letting these garments appear in unseen test
outfits has a significant effect. The Polyvore Dataset comes
in two versions:

• Polyvore-S (Standard) – This version is easier as no
outfit appearing in the training set or in the test set
can appear in the other one, while it is possible that
an item belonging to a training outfit is seen in a test
one.

TABLE 1
Size comparison of Polyvore dataset versions

Version #Outfits #Items Train Outfits Val Outfits Test Outfits
Polyvore-S 68306 365054 53306 5000 10000
Polyvore-D 32140 175485 16995 3000 15145

Fig. 7. The outfit size distribution of Polyvore-S train split

• Polyvore-D (Disjoint) – A more challenging version,
where even garments are not allowed to appear in
more than one set.

In Tab. 1, the outfit and item numbers, along with the
split sizes, are summarized for both versions. In Fig. 7,
the outfit size distribution for the Polyvore-S train split, is
visualized.

7 TGNN SETUP

First, each garment image is distilled in a feature vector,
as described in Section 4.1, by feeding it to a pretrained
ResNet50 [35], and then through a PCA resulting in de =
128 dimensional feature vectors.

Let GG be the Item Relation Graph of the dataset, as in
Definition 3.2. Generally speaking, every dataset of interest
will have an IRG too large to handle. In Tab. 2, some graph
statistics for the Polyvore IRGs are shown. For example, the
Polyvore-S train split IRG contains more than 200k nodes
and more than 680k edges.

These numbers do not allow operating on the entire IRG
at once, as it will saturate the GPU memory. To overcome
this issue, we first split the graph into clusters and only
retain relevant partitions. Let GO be the dataset ORG, as in
Definition 3.1. Based on the idea of Cluster-GCN [36], this
ORG is partitioned, using the METIS clustering algorithm
[37], in P subgraphs such that each of them contains about
ϕ nodes (i.e. outfits). We refer to the p-th partition of the
ORG as GO,p. In our experiments we use ϕ = 50.

7.1 Training Setup

Given an outfit o = {g1, · · · , gn}, a training example is a
triplet (ô, GG,o, Cô) where ô is a random permutation of the
original outfit o. This means that the model sees a different
shuffled version of the same outfit at every epoch, acting as a
form of data augmentation and making the model invariant
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TABLE 2
Graph statistics for both the train and test IRGs of the Polyvore-S and

Polyvore-D datasets

Polyvore-S Polyvore-D
Train Test Train Test

#Nodes 204679 47854 71967 70035
#Edges 685024 129496 192545 165313
Avg. Degree 6.693 5.412 5.35 4.721
Median Degree 5 5 5 4
Conn. Components 9226 4994 4837 11224
Transitivity 0.328 0.732 0.654 0.806
Avg. Cluster Coeff. 0.88 0.945 0.916 0.955
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Fig. 8. Explained variance for PCA computed on ResNet50 features
extracted from Polyvore.

to garment ordering. To build the partitioned IRG GG,o,
relative to outfit o, we adopt the following steps:

1) Find the partition GO,p = (Vp, Ep) such that o ∈ Vp.
2) From GO,p, build its IRG induction GO,p =

(Vp, Ep) = GG,p as in Definition 3.3.
3) Remove all the edges ei,j ∈ Ep such that gi, gj ∈

o, gi ̸= gj , i.e. all edges connecting elements of o.

Finally, for each garment gi in the outfit that has to be
predicted, we build a candidate set Ci containing (nC +
nR + 1) garments:

• nC random negatives gj ∈ GG,o such that gj /∈ o and
C(gj) = C(gi), i.e. belonging to the same category of
the ground truth item.

• nR random distractors gj ∈ GG,o such that gj /∈ o.
• 1 garment representing the ground truth item Γi.

We refer to Cô = {C1, · · · , Cn} as the set of candidate sets
for each step. In our experiments we use, unless expressly
stated otherwise, nC = 3 and nR = 5.

The model is trained to output the sequence of garments
in the outfit, starting from a garment seed and optimizing
the loss defined in Eq. 4 at each generation step.

7.2 Training Details and Hyperparameters
If not otherwise stated, the following hyperparameter val-
ues are used throughout all the experiments. We set the
number of modules in the encoder block, i.e. the aggregation

Fig. 9. SIP is a task in which a model has to predict, for each item in
a given outfit, the next one. Here is an example for the first 3 items of
an outfit, along with their candidate sets from which to choose the next
correct item. This task objective is to find the correct garment Γi = gi+1

given the seed (g1, · · · , gi).

radius, equal to Kenc = 2. As for the decoder, we use a
number of modules Kdec = 4. Garment images are projected
using PCA to an embedding of dimension de = 128. The
explained variance for the PCA is depicted in Fig. 8. Such
embeddings are projected by the transition layer into a
hidden space with dm = 256 dimensions. For multi-head
attention, we use H = 8 heads.

The network is optimized with the Adam [38] optimizer
with learning rate 5 · 10−4 and weight decay 5 · 10−5.
The learning rate is reduced by a 0.1 factor each time the
validation loss reaches a plateau. Dropout is applied to each
dense layer and with value 0.35. The model is trained for
a maximum of 1000 epochs with an early stopping strategy
on the validation loss with a 10 epoch patience.

The GPU used during training is a Nvidia Titan RTX
with 24GB memory. Half-precision was employed to lower
memory requirements and training time.

8 EVALUATION TASKS OVERVIEW

The performance of TGNN is evaluated on three different
tasks. Our main focus is on outfit generation, for which
we formalize an evaluation protocol named Seeded Item
Prediction. However, we also apply our model to standard
compatibility tasks, namely Fill-In-The-Blank and Compati-
bility Prediction, which are widely adopted in literature [2],
[3], [32]. In the following we provide a brief overview of
such tasks and relative evaluation metrics.

Seeded Item Prediction (SIP) is a task where the model
is presented with a partial outfit and it has to incrementally
predict the next complementary item given the previous
ones from a collection of possible candidates (Fig. 9). The
performance is evaluated using the accuracy in choosing
the correct item.

Fill-In-The-Blank (FITB) is a task in which the model
is presented with an incomplete outfit missing one item.
Along with the outfit, four candidate items (three incorrect
and one correct), are provided as possible answers. The task
is then to choose the item between the candidates that is
the most compatible with the given incomplete outfit (Fig.
10). The results are evaluated as overall accuracy. It must
be noted that FITB is a special case of the SIP task: the two
tasks are the same when the seed of SIP is the entire outfit
minus one item and the possible answer set is composed by

This article has been accepted for publication in IEEE Transactions on Emerging Topics in Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TETC.2023.3268363

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Universita degli Studi di Siena. Downloaded on February 07,2024 at 20:56:18 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

Fig. 10. Visual illustration of the FITB (left) and the CP (right) tasks. Left
– In FITB, the task has to choose an item from a candidate set that
is most compatible with a given incomplete outfit; the performance is
evaluated by the accuracy of choosing the correct item, here visualized
as the green one. Right – In CP, the task scores how much a candidate
outfit is compatible; to do this, it compares pairs of compatible (green)
and incompatible (red) outfits, trying to assign a higher score to the
compatible one.

four items. In this sense, the commonly adopted FITB task
is an oversimplification of SIP.

Compatibility Prediction (CP) is a task where the model
has to predict whether a candidate outfit is compatible or
not (Fig. 10). Outfits are scored to assess whether their
constituting items are compatible with each other. The task
is performed by feeding to the model two different outfits,
namely a positive ground truth outfit, which is known to
be compatible, and a negative random outfit. The model is
requested to score the two outfits and the task is considered
successful when the positive one is scored higher than the
negative one. The performance is evaluated using the area
under the receiver operating characteristic curve (AUROC).

8.1 Test Setup
Since the TGNN architecture works with triplets containing
an outfit, a graph partition and a candidate set in the form
of (o,GG,o, Co), like the ones described in Section 7.1, these
must be carefully constructed for each evaluation task.

For the Fill-In-The-Blank task, given the original com-
plete outfit o = {g1, · · · , gb, · · · , gn}, where gb is the blank
garment placeholder corresponding to the item to be pre-
dicted, the triplet will be (ô, GG,o, Cô) where:

• ô is the incomplete outfit, that is, o without the blank
item gb.

• GG,o is a graph partition built in the same way as
described in Section 7.1. However, instead of identi-
fying the partition that exactly contains o, we retrieve
the most similar garments in the training set and
take the partition containing the maximum number
of such garments. This is done because, in general, a
test outfit might not be present in the training set. By
doing so, we assume that test garments have some
sufficiently similar items in the training graph, which
we believe to be a reasonable assumption. Other
methods from the state of the art not depending on a
garment graph may not make this assumption.

• Cô = Cb containing the four possible answers, among
which there is the correct garment. Note that there is
a single candidate set, since in the FITB task we only
need to perform one prediction step to complete the
outfit.

For the Compatibility Prediction task, instead, we need
to identify a graph partition for both the positive and neg-

ative outfits. Both partitions are taken looking for the most
similar items in the training set, as in the FITB configuration.

We then generate a random partition of the garments and
ask the model to recreate the outfit from a single-element
seed. We average the likelihood of the correct garment
at each generation step to obtain the final compatibility
prediction score. In order to do so, we need to define a
candidate set Ci for each step. Each one is composed of
the ground truth item Γi and three other random garments
belonging to GG,o.

Finally, for the Seeded Item Prediction task, the setup is
the same as Section 7.1 without the initial random permu-
tation. Also in this case, the graph partition is obtained by
taking the one with the maximum number of most similar
items to the partial outfit in the training set.

8.2 Baselines

To validate the hypothesis that contextual information,
i.e. the Item Relation Graph, and self-attention play an
important role for compatibility learning, TGNN is com-
pared with previously reported approaches on the Polyvore
dataset:

• Siamese Network - The approach described by Veit
et al. [27] that estimates pairwise compatibility based
on co-occurrence in large-scale user behavior data.

• Bi-LSTM - Han et al. [3] was the first work to consider
an outfit as a whole, representing it as an ordered
sequence. Taking multi-modal data as input, it can
calculate the compatibility scores of outfits by itera-
tively predicting the next item.

• CSN T1:1 - Learns a pairwise category-dependent
transformation using the approach of Veit et al. [39] to
project a general embedding to a single type-specific
space, measuring compatibility between two item
categories.

• Type Aware - This method, described in Vasileva et al.
[2], focuses on learning item image embeddings that
respect the item type by measuring pairwise item
similarity in different semantic subspaces.

• SCE-Net - Introduced in Tan et al. [40], it jointly
learns pairwise different representation subspaces
for different similarity conditions without explicit
supervision.

• CSA-Net - Approach introduced by Lin et al. [41] that
models outfit compatibility by encoding category
pairs information to each item embedding vector.

• Pseudo-Label - Described in Revanur et al. [32],
this method, developed for semi-supervised settings,
learns item embeddings by generating pseudo posi-
tive and negative pairs on-the-fly during each train-
ing epoch. These pairs can be based on different char-
acteristics, like colors, shapes, etc. while discarding
the item category notion.

• ADDE-O - The method [42] is based on learning dis-
entangled features for specific attribute classes. This
allows to perform targeted manipulations exploiting
a memory bank of attribute prototypes.

• MUFIN - Recently proposed in [43], the method
addresses the task of Extreme Classification, i.e. a
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TABLE 3
Accuracy on the Seeded Item Prediction task for both Polyvore-D and

Polyvore-S datasets.

Polyvore-D Polyvore-S
Random 11.0 11.2
Type Aware [2] 43.3 42.0
TGNN 51.3 55.6

Fig. 11. Qualitative results obtained by TGNN on Polyvore-D. Images
marked as seed are garments belonging to the same outfit, whereas
generated ones are items suggested by TGNN to complete the outfit.

training strategy involving millions of labels lever-
aging both visual and textual descriptors.

• OutfitTransformer - This paper [29] proposes to
obtain outfit-level representations with transformers
to address the tasks of compatibility prediction and
fill in the blank, as well as a complementary outfit
retrieval taks.

We also report variants of some of the methods, re-
ferred to as VSE, which add a visual-semantic embedding,
as described in [2], jointly learned with the compatibility
embedding.

9 RESULTS

We first evaluate our model on the newly introduced task
of Seeded Item Prediction (SIP). The task was created to
evaluate the outfit generation capabilities of TGNN. As
illustrated in Fig. 9, given an outfit o = {g1, · · · , gn}, the
task objective is to correctly predict the next item Γi = gi+1

from a candidate set, given the previous items {g1, · · · , gi}.
Tab. 3 shows how TGNN performs on this task, along with
two baselines, by measuring the accuracy of choosing the
correct item. Since SIP is a novel evaluation task proposed
in this work, there are no available results from previous
works. To provide a solid baseline, the task was evaluated
with the publicly released code of the Type Aware architec-
ture1. To generate the results, we trained the model with the
same hyperparameter values as described in the original

1. Original code available at https://github.com/mvasil/
fashion-compatibility

Fig. 12. Failure cases. In the first example, the model has failed to
complete the outfit, picking only a bottom and a bag without choosing
a top. In the second one instead TGNN has built an outfit with a different
style than one ground truth one.

paper [2]. We provide also a random baseline as a lower
bound.

TGNN performs well on this difficult task, showing that
it is capable of correctly generating outfits. There is a gap
between the accuracy obtained with the two Polyvore ver-
sions. We attribute this to the attention mechanism, whose
characteristic is to learn how different items are related
among themselves. Therefore, the presence, or absence, in
the test set of items seen during the training phase could
most likely influence this mechanism, and, in turn, the
whole model performance.

In Fig. 11 we report qualitative results of correctly gener-
ated outfits by TGNN in the Seeded Item Prediction setting.
It can be seen that TGNN is able to generate outfits with a
variable number of outfits, starting from a variable number
of seeds. We also show a few failure cases in Fig. 12. In
the first failure case, the model emits the stop sign before
completing the outfit, lacking a top garment to complete
the outfit. In the second example, the model generates an
outfit with a style different from the ground truth one. This
behaviour is easily avoidable by adding more seed items to
the input.

We then evaluate TGNN for the tasks of Fill-In-The-
Blank (FITB) and Compatibility Prediction (CP). As shown
in Tab. 4, TGNN outperforms previous state of the art
methods on both tasks. These results suggest that the graph
structure provides valuable information for this kind of task.
In particular for FITB it is indeed to be expected that, within
an IRG, the missing garment (or one similar enough) will be
found close to its complementary items. At the same time,
for Compatibility Prediction we believe that the multi-head
self-attention mechanisms of TGNN plays an important
role: by learning to model compatibilities between an item
and all the other ones within the same outfit, the model
implicitly learns a global outfit compatibility notion by
combining all of these item compatibilities.

Since several methods adopt a ResNet18 backbone [35]
rather than a ResNet50 like ours, we also show results for a
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TABLE 4
Comparison of TGNN against state-of-the-art methods. Some of these rely on additional supervision such as text embeddings and explicit

category supervision. FITB accuracy and Compatibility AUROC are reported. Higher is better.

Polyvore-D Polyvore-S
Method Text labels Explicit category FITB acc CP AUROC FITB acc CP AUROC
Siamese Network [2] × × 51.8 0.81 52.9 0.81
Bi-LSTM + VSE [3] ✓ × 39.4 0.62 39.7 0.65
CSN T1:1 [39] × ✓ 52.5 0.82 54.0 0.83
CSN T1:1 + VSE [39] ✓ ✓ 53.0 0.82 54.5 0.84
Type Aware [2] ✓ ✓ 55.65 0.84 58.83 0.86
SCE-Net (avg) [41] ✓ × 53.67 0.82 59.07 0.88
Pseudo-Label [32] × × 54.6 0.84 57.9 0.89
CSA-Net [41] × ✓ 59.26 0.87 63.73 0.91
ADDE-O [42] × × 60.53 0.88 65.16 0.93
MUFIN [43] ✓ × 64.17 - - -
OutfitTransformer [29] ✓ × 59.48 0.88 67.10 0.93
TGNN-18 × × 65.36 0.93 68.72 0.95
TGNN × × 65.74 0.94 69.03 0.96

TABLE 5
TGNN results for Seeded Item Prediction and Compatibility Prediction,

calculated for different ϕ values.

Polyvore-D Polyvore-S
SIP CP SIP CP

ϕ = 25 45.7 0.88 52.4 0.89
ϕ = 50 51.3 0.94 55.6 0.96
ϕ = 100 44.0 0.78 49.7 0.80
ϕ = 200 34.8 0.78 42.9 0.80

variant of TGNN using ResNet18 features to establish a fair
comparison. Apart from the backbone the whole training
and evaluation procedure is left unchanged. Indeed, using
ResNet18 features there is a slight performance drop but
TGNN still manages to achieve state of the art results.

9.1 Ablation Studies
To better analyze the TGNN behavior, it is useful to correlate
the performance with those hyperparameters peculiar to the
proposed architecture, namely ϕ – the one controlling the
partition sizes – and Kenc – the one defining how far from
a node the information gets aggregated into the said node,
i.e. the aggregation radius.

9.1.1 Partition Size
In Tab. 5, the TGNN results for different ϕ values are shown.
It is clear that, when increasing ϕ, i.e. when the partitions
GG,o grow larger, TGNN performance decreases. The main
reasons are:

1) The encoder block is no longer able to learn, and
thus to integrate into the nodes useful relational
information from the surrounding context. In other
words, there is too much information and the en-
coder block fails to handle it.

2) The Encoder-Decoder Attention of each decoder mod-
ule relates each item gi ∈ o with all the nodes of
GG,o; with higher ϕ values, the number of nodes
grows exponentially, thus, making the Encoder-
Decoder Attention layer increasingly complex.

On the contrary, when lowering the partition size too
much, the accuracy decreases since not enough context is
given to the model.

TABLE 6
TGNN performance on Polyvore-D for different Kenc values.

Polyvore-D Polyvore-S
SIP CP SIP CP Train time

Kenc = 2 35.9 0.77 32.6 0.83 3h 27m
Kenc = 3 42.5 0.86 39.0 0.91 5h 50m
Kenc = 4 51.3 0.94 55.6 0.96 10h 22m
Kenc = 5 51.3 0.95 55.5 0.94 17h 31m

9.1.2 Aggregation Radius
In Tab. 6, the results obtained by TGNN are shown, at
increasing values of the aggregation radius Kenc. The ex-
periments were carried out with all the hyperparameter
values fixed to the ones listed in Sec. 7.2. It is clear that
increasing Kenc yields better results. In fact, Kenc controls
how many encoder modules are used in the encoder block,
which, in turn, affects how far from a given node the infor-
mation gets aggregated, i.e. from the Kenc-neighborhood
of the said node. Increasing Kenc does indeed help the
encoder block at managing the information in the graph,
while learning useful relationships between loosely coupled
outfits. Eventually, the benefits of increasing Kenc saturate,
bringing negligible or no benefits, yet requiring a much
longer training time (Tab. 6).

10 CONCLUSIONS

This work focused on the problem of outfit generation
starting from a garment seed, which consists in proposing
a set of garments that, combined with the seed, assembles
a compatible outfit. To this aim, Transformer-based Graph
Neural Network is proposed as a novel architecture which
combines the capabilities of Graph Neural Networks with
the powerful Transformer model. The proposed method is
capable of learning the complex relations existing between
items and outfits by employing graph representations and
attention mechanisms. Through message propagation and
self-attention, an item compatibility notion is refined by
aggregating the interaction information derived from its
neighbors. This knowledge is then used in the generation
phase to iteratively choose the item that is most compatible
with the seed and the previously chosen ones. Extensive
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experiments on the Polyvore dataset have demonstrated the
rationality and the effectiveness of TGNN, which outper-
forms previous models in outfit compatibility tasks.

11 FURTHER DEVELOPMENTS

Since the iterative generation mechanism is inspired to the
one employed in many NLP models, we plan to improve
the generation performance with search strategies inspired
by the field of NLP, such as Beam Search. Another matter
worth investigating is making the architecture work with
a dynamic IRG. In other words a graph that can change
over time by adding new nodes or edges. Being able to
handle such real-world situations could prove fundamental
to evolve a research model in a production ready one. Fur-
thermore, to resolve the Encoder-Decoder Attention issue
when the ϕ value increases, further studies could focus on
creating masks in order to intelligently limit the number of
partition nodes to which any outfit item is related to. Finally,
an assessment from domain experts as an additional term
of comparison between methods could help understanding
which aspects are taken into account while composing the
outfit, such as style, color, etc.
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