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The capacity to create "fake" videos has recently raised concerns about the reliability of multimedia content. Identifying

between true and false information is a critical step toward resolving this problem. On this issue, several algorithms utilizing

deep learning and facial landmarks have yielded intriguing results. Facial landmarks are traits that are solely tied to the

subject’s head posture. Based on this observation, we study how Head Pose Estimation (HPE) patterns may be utilized to

detect deepfakes in this work. The HPE patterns studied are based on FSA-Net, SynergyNet, and WSM, which are among the

most performant approaches on the state of the art. Finally, using a machine learning technique based on K-Nearest Neighbor

and Dynamic Time Warping, their temporal patterns are categorized as authentic or false. We also ofer a set of experiments

for examining the feasibility of using deep learning techniques on such patterns. The indings reveal that the ability to

recognize a deepfake video utilizing an HPE pattern is dependent on the HPE methodology. On the contrary, performance is

less dependent on the performance of the utilized HPE technique. Experiments are carried out on the FaceForensics++ dataset,

that presents both identity swap and expression swap examples. The indings show that FSA-Net is an efective feature

extraction method for determining whether a pattern belongs to a deepfake or not. The approach is also robust in comparison

to deepfake videos created using various methods or for diferent goals. In mean the method obtain 86% of accuracy on the

identity swap task and 86.5% of accuracy on the expression swap. These indings ofer up various possibilities and future

directions for solving the deepfake detection problem using specialized HPE approaches, which are also known to be fast and

reliable.

CCS Concepts: · Computing methodologies→ Feature selection; · Applied computing→ Investigation techniques.

Additional Key Words and Phrases: DeepFake, Face Recognition, Head Pose Estimation, Machine Learning, Deep Learning

1 INTRODUCTION

Deepfake is a system that uses artiicial intelligence to generate modiied videos or images that appear real.
Deepfake videos can be created using this technology to scam, mislead, or propagate disinformation. The inclusion
of deepfake videos in forensics can pose a variety of issues. A deepfake video, for example, might be used as
evidence in a judicial trial to indict an innocent person or absolve a criminal individual. A famous episode of
the inital spreading of deepfake was in april 2018, when Jordan Peele e Jonah Peretti creted a deepfake by using
Barack Obama as a spot on the dangers of deepfakes (Fig. 1). Deepfake video might potentially be used to deceive
witnesses and inluence jury decisions. Furthermore, the presence of deepfake videos may jeopardize the integrity
of digital forensic evidence. For example, if a deepfake video is used to change digital evidence, investigators may
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ind it diicult to discern between what is genuine and what is not. Inevitably, deepfake videos may be exploited
to violate people’s privacy. A deepfake video, for example, may be constructed to share private information
or to discredit an individual. This might irreparably harm the reputations and lives of those concerned. To
summarize, the emergence of deepfake videos compromises the trustworthiness of digital forensic evidence as
well as people’s privacy. Forensic investigators and cybersecurity specialists must be aware of the risks involved
with this technology and be prepared to recognize and refute deepfake videos as needed.

It is for this aim that deepfake detection methods were born. Deepfake detection methods use a combination
of analytic and machine learning approaches to detect and distinguish deepfake videos from real ones. Deepfake
detection employs a number of approaches, including facial and lip movement analysis, picture texture analysis,
identiication of compression artifacts, and evaluation of the video’s temporal consistency. These strategies can
be used in conjunction to increase the detection system’s accuracy. Deepfake videos are frequently detected
using machine learning methods such as convolutional neural networks [6]. These algorithms may be trained on
a large number of deepfake and legitimate video examples to learn to recognize and identify the distinguishing
elements of deepfake videos. Deepfake detection approaches, however, have certain drawbacks. Deepfake video
developers, for example, may utilize more complex tactics to prevent detection, such as adversarial generation
algorithms to disguise deepfake video trademarks. Also, image quality and the type of video studied might have
an impact on detection. Therefore, it is important to always study new techniques based on diferent concepts
and features. We propose research on the use of head posture estimation as characteristics for the detection of
deepfakes in this work, driven by early concepts that have not yet been fully investigated [43].

Fig. 1. The deepfake of Obama created by Jordan Peele and Jonah Pereti. The image has been obtained by the BBC youtube

channel.

Head Pose Estimation (HPE) is a technique for estimating a person’s head position and orientation in an
image or video. Several applications rely on head position estimation, including augmented reality, human-
computer interface, and computer security. In head pose estimation, the angular notations pitch, yaw, and roll
are often employed to indicate head orientation. Pitch is the angle of head tilt relative to the horizontal axis
(forward and backward movement), yaw represents the angle of head rotation relative to the vertical axis (left
and right movement), and roll represents the angle of head rotation relative to the longitudinal axis (lateral tilt
movement). In recent times, the HPE algorithms have achieved very high performances in terms of angular
errors. Some methods are based on both handcrafted features as statistical distribution [2], [7] or fractal encodings
[9], [8] than neural networks [42], [38], [20] [37]. Those methods base their estimation technique on the aspect
or key points of the face. The same features are used in several works operating in deepfake detection [32], [44].

As a result, the question arises: can a video’s representative sequence of head pose predictions give distinguishing

information between a true pattern and a deepfake? When a video is tampered with, an alignment on the face
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needs to be performed. The discrepancy in this alignment can be more or less visible to a human. HPE methods
are very accurate at detecting slight diferences in rotations along the three axes of the head. In Figure 2 we can
observe the variation in pitch, yaw, and roll during a video sequence for a real and a fake video generated by
FaceSwap [1]. As we can notice, the discrepancy may assume diferent aspects. In pitch, it seems that the fake

Fig. 2. Diferences between the HPE path in pitch, yaw, and roll by using FSA-Net on a real video and a fake produced by

FaceSwap.

video has mismatched the real one by a constant, since the real face roll rotation is always higher than the fake
one. By observing the yaw rotation, we can notice that the fake face tends to rotate less than the real one. In
particular, when the real one performs a signiicant rotation (between frames 15 and 40), the fake face is not able
to reproduce this behavior. The roll rotation in this case, is the best hallucination created by the fake video. This
could depend on which points were considered more relevant by the deepfake generator to align the images.

If we consider the mean and the standard deviation of the fake and real values on the axis, we obtain the results
in Table 1

Axes Real Fake

Pitch 1.65±3.05 -3.34±2.79

Yaw 5.88±6.07 8.66±3.22

Roll 4.86±1.25 5.05±2.47

Table 1. The mean and the standard deviation along the three axes of the real and fake video from the sequence in Figure 2.

This suggests that the HPE pattern has relevance when seen from the point of view of the deepfake detector.
In this paper, we conduct a horizontal and vertical analysis to attempt to answer the previous question, by
analyzing three distinct HPE methods consistent with recent literature on the topic [3]. We can thus summarize
the contribution of the paper as follows:
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• An horizontal analysis is conducted on the popular FF++ deepfake dataset, examining the methods of HPE,
FSA-Net, SynergyNet, and the Web-Shaped Model (WSM) and providing results in terms of accuracy and
F1-score of the real and fake classes.

• The most performant classiication method is identiied by testing a machine learning approach based
on KNN and Dynamic Time Warping (DTW) and a deep learning approach based on 1D convolutional
networks and recurrent neural networks. The results on the KNN with DTW and FSA-Net shows an
accuracy until 91%.

• A comparison with the state of the art and cross-dataset comparisons are provided to demonstrate how
signiicantly HPE’s best-performing approach difers from the performance of contemporary, purpose-built
publications on the deepfake detection challenge.

The remainder of the paper is organized as follows: In Section 2 we present the methods at the state of the art
that are focused on the deepfake detection problems. In Section 3 we discuss in detail the steps of the selected
HPE techniques, together with the motivations why we prefer those techniques over other methods at the state
of the art. In Section 4 we present the experimental protocol. In particular, here we discuss the dataset used,
the details of the classiication methods, and their characteristics. In Section 5 the results obtained are shown.
Firstly, an ablation study has been conducted to ind the optimal parameters and the optimal HPE method by
taking a subset of the dataset into account. Then, the optimal method is compared with the state of the art and
in a cross-validation context between identity swap and expression swap. Finally, in Section 6 we draw our
conclusions and give consideration to the efectiveness of the HPE methods to detect deepfake videos. Here, we
also suggest some future directions to improve the performance of HPE methods to solve this task.

2 RELATED WORKS

Various recent state-of-the-art studies may be found in the domain of deepfake detection. Deepfakes’ implications
are of great interest not just to the scientiic community, but also to the media and ordinary people who have
access to social and media channels. As a result, various authors have investigated methods to recognize these
artifacts, frequently using the same techniques that created them, speciically deep learning. Because the presence
of a temporal variable limits the research category to biometrics generated from videos, we will encounter various
studies based on graphs and LSTMs. Therefore, we may divide algorithms into two main types: those that regard
deepfakes as anomalies and those that treat deepfakes as a distinct pattern from real videos. Rossler et al. [33]
proposed irstly the FaceForensics++ Dataset, composed by 4 deepfakes generated videos. Together with the
dataset, they also presented some benchmarks on the latter, such as XceptionNet [11], MesoNet [4], etc. The
technology utilized by Rossler et al. to create these videos, such as the Face2Face app or FaceSwap, are widely
available to the average user. Furthermore, they produce artifacts of varied complexity, allowing one to analyze
the degree to which a deepfake detection algorithm is capable of detecting artifacts. Deepfake detection has
grown since this time, and academic research and artifacts that can be made by the general consumer have
aligned. Demir et al. [14] developed a three-step method. They begin by identifying certain eye and gaze traits
that are common in deep fakes and display distinct patterns in actual videos. Second, they combined these
characteristics into signatures and compare them across actual and fake videos, taking into account geometric,
visual, metric, temporal, and spectral variances. Finally, they created a deep neural network to extend this
formulation and categorize any videos as false or real. Also, Xu et al. [41] proposed an approach based on diferent
sets of features. They describe MCX-API, which combines pairwise learning and information from diferent color
space representations in a ine-grained manner to detect deepfakes. To leverage information from various color
spaces, a multi-channel network is used as the base. This is followed by enforcing pairwise learning, utilizing
the architecture of AattentivePpairwiseLlearning Khalid et al. [24] proposed a new architecture based on graph
neural networks for detecting hyper-realistic deepfakes. The method involves dividing the image into smaller
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patches, or nodes, which are then connected to form a graph by linking the nearest neighbors. To facilitate the
exchange of information between nodes, the model consists of two core modules: GraphNet, which utilizes graph
convolution layers to gather and update graph information, and FFN, which employs linear layers to transform
node features. This architecture is particularly popular for detecting deepfakes. Xie et al. [40] focused on the
computational performances. They proposed a modiied version of AlexNet. While the classical architecture has 5
convolutional layers, 3 of which are fully connected, and a softmax activation function, the author proposed using
a lighter version with only 3 convolutional layers. Ilyas et al. [21] also use a previously existing architecture to
propose a hybrid deep learning framework called InceptionResNet-BiLSTM. It comprises two components: a
customized InceptionResNetV2 and a Bidirectional Long-Short Term Memory (BiLSTM). The framework operates
by extracting faces from videos and feeding them to the customized InceptionResNetV2, which extracts learnable
features at the frame level. The sequence of features obtained is then used to train a temporally aware BiLSTM,
which classiies videos as either real or fake.

Then, we have methods that see the deepfake as an anomaly, and as a consequence, the problem is solved with
anomaly detection techniques. Liu et al. [28] introduced a new detector called TCSD, which consists of three
complementary streams based on several semantic discrepancies. Firstly, they developed a new depth estimator
to capture depth information (DI). To further enhance the detection of forgeries, they also took into account the
discrepancy between the foreground and background information (FBI) and the inconsistency between local
and global information (LGI). These measures are aimed at providing more comprehensive forgery clues. An
attention-based multi-scale feature extraction (MsFE) module captures more complementary features from the
depth information, foreground information, and background information. And inally, two attention-based feature
fusion modules dynamically combine the extracted information. Khalid et al. [25] proposed the OCFakeDect, an
approach based on variational autoencoder block to detect Deepfakes by efectively learning the features of real
images. The problem is thus structured as a one-class anomaly detection problem. To this aim, they deined an
anomaly score by the loss reconstruction score. The thresholding is statistically based, obtained by calculating
the inter-quartile range considering 80% of the distribution. Heo et al. [18] proposed a detection method for
fake videos using a Vision Transformer model and a distillation methodology. They designed a CNN feature
and patch-based positioning model that interacts with all positions to identify the artifact region, which helps
solve the false negative problem. To detect discrepancies, Nirkin et al. [31] focused on the generic features of
the face as a biometric trait. To accomplish this, they employ two networks: a face identiication network that
focuses on the facial region delimited by a precise semantic segmentation and a context recognition network
that takes the context of the face into account. The recognition signals obtained from these two networks are
then used to detect these discrepancies. Finally, Chugh et al. [12] proposed deepfake video identiication based
on the dissimilarity between audio and visual domains, known as the Modality Dissonance Score (MDS). They
anticipated that manipulating one modality will result in disharmony between the two, such as loss of lip-sync,
abnormal face and lip motions, and so on. The mean aggregate of dissimilarity scores between audio and visual
segments in a video is used to calculate MDS. Discriminative characteristics are gained chunk-wise for the audio
and visual channels, using the cross-entropy loss for individual modalities and a contrastive loss to describe
inter-modality similarity.

3 HPE METHODS

One of the most prevalent strategies for estimating head posture is to employ a mix of face detection and landmark
analysis tools. The system, in particular, can recognize the individual’s face in the image and then evaluate
markers such as the eyes, nose, and mouth to establish the position and orientation of the head. Other methods
may employ machine learning algorithms to understand the correlations between facial landmarks and head
posture, or they may employ information about the shape and structure of the human head to estimate its location
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and orientation. Many HPE approaches have recently produced extremely good results for this problem. In
controlled environments, those methods may reach a mean error of around 3 °[2], [17], [37]). The literature of
the last ive years has on this kind of data a mean error of 4.64 °. In the wild, the accuracies are very various
depending on the database used to perform the training and on how much the model has been adapted to the
latter by preprocessing. Only one algorithm obtained an error lower than 2°in mean [39]. The majority has a
mean error over 3°[26], [20], [29]. The literature of the last ive years has on this kind of data a mean error of 5.04
°.

The HPE methods used in our analysis are FSA-Net [42], SynergyNet [38] and Web-Shaped Model (WSM) [2].
Those methods have been chosen on the basis of the following criteria:

• Availability of the code. In order to reproduce the methods correctly, we preferred the papers that have
a well commented and reproducible code.

• Novelty and diferentiation of the methods. We preferred three methods that use completely diferent
architectures. The methods are from the years 2019, 2020, and 2021; for this reason, they are in line with
the SOTA.

• Performances. The preferred methods present high performances on the HPE task. FSA-Net has a mean
4°of error in controlled environments and 5.07°of error in the wild. SynergyNet has, on average, 2.55°of
error in the wild. WSM has in mean 2.43°of error on controlled environments and 4.09°of error in the wild.
All three methods have an error near or lower than the mean of the SOTA for both environments.

In Figure 3 it is possible to appreciate the angles estimated in pitch, yaw, and roll by the three methods on a
frame of a deepfake video from the FaceForensics++ Dataset.

Fig. 3. The three degrees of freedom in head orientation - Pitch (in red), Yaw (in green), and Roll (in blue) - estimated from

the methods used in the experimental phase.

3.1 FSA-Net

The authors in [42] presented a model called FSA-Net that was designed for the estimation of head pose from a
single image without the use of facial landmarks. FSA-Net is built on the foundation of the soft stagewise regression
(SSR) scheme, and to capture multi-scale information, it combines feature maps obtained from diferent layers.
The fundamental concept underlying FSA-Net is the spatial grouping of pixel-level features within the feature
map to generate a collection of characteristics encoded with spatial information. These features are then selected
as candidates for aggregation. The crux of FSA-Net lies in its capability to learn a ine-grained structure mapping
that groups pixel-level features into region-level features with greater potency. This mapping can be viewed as a
highly adaptable and versatile tool for pooling. To extract a broader range of spatial information, the authors
have incorporated both learnable and non-learnable importance measures. This approach facilitates the creation
of complementary model variants that work together synergistically to form a powerful and robust ensemble.
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A comprehensive description of the FSA-Net architecture is provided below, focusing on its main features and
relevant aspects.
Given an input image, the architecture is based on a process that involves two streams, each of which is

responsible for extracting feature maps at various stages. Speciically, there are � stages, and for the �-�ℎ stage,
the feature maps extracted from both streams are fused together. This results in a combined feature map that
is subsequently transformed into � channels. To reduce the size of the feature map, average pooling is applied,
yielding a � × ℎ × � feature map �� for the �-�ℎ stage. �� is a grid that represents the spatial layout of the
input image, with each individual cell containing a �-dimensional feature representation that corresponds to a
speciic location within the image. After that, the � feature maps are inserted into the mapping module, which
generates � �′-� vectors. These vectors are utilized to compute the stage outputs for SSR function. With � feature
maps of dimensions� × ℎ × � , the fundamental purpose of the aggregation module is to compress a group of
features into a limited set of more relevant characteristics (� �′-� features, one for each stage). However, several
existing feature aggregation methods entirely neglect the spatial information. To address this issue, the authors
put forth the suggestion of performing spatial grouping of features before introducing them into the aggregation
process. For every feature map�� , a scoring function is employed to calculate its corresponding attention map
�� . Afterward, the ine-grained structure mapping module, designed to learn the process of extracting �′ �-�
meaningful features through the spatial weighting of pixel-level characteristics, receives the feature maps and
attention maps, i.e.,�� and �� , respectively, as input. These resultant vectors are input into a feature aggregation
technique, which produces the inal set for regression, � , consisting of � �′-� features. Utilizing the vector �� ,
a fully connected layer generates the stage outputs for the �-�ℎ stage, which are then substituted into the SSR
function to derive the head pose. The resulting blocks representing the core of the network can be represented as:

�� (�) = {�������2� (3�3, �) − �� − ����}

�� (�) = {�������2� (3�3, �) − �� −���ℎ}
(1)

SepConv2D represent the separable convolution, BN is the Batch normalization of parameter � and ReLu and Tanh
represent the two activation functions of the blocks. For more details about the scoring function and ine-grained
structure mapping, please refer to [42]. Figure 4 shows the architecture of FSA-Net.

Fig. 4. Overview of FSA-Net architecture [42].
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3.2 Web-Shaped Model

The method employed in [2] to estimate head pose consists of two major steps:

• Facial landmark detection: it detects 68 facial keypoints from a given input image of a face.
• Web-Shaped Model (WSM): the WSM is employed to draw a virtual spider’s web on the input face image.
It is then utilized to derive a descriptive array of the pose, which is determined by the position of the
aforementioned landmarks.

Initially, the approach introduced in [23] is employed to predict 68 facial landmarks. These landmarks are
denoted as coordinate points (�,�) on the input image. In particular, they provide a clear deinition of the face
contours, including the nose, lips, eyes, and eyebrows. The second method involves utilizing the Web-Shaped
Model. This model is constructed by drawing a virtual spider web on the input image using the previously
predicted landmark coordinates. The center of the spider web is placed at the tip of the nose, which corresponds
to landmark number 33, and the radius is set to the distance from the center to the furthest landmark. The WSM
categorizes each of the 68 facial landmarks (excluding landmark number 33) into a speciic "sector" on the spider
web based on its location. The radius � of the spider’s web is determined by computing the Euclidean distance �
between the center point� = (�33, �33) and the farthest landmark � � , � = 1, ..., 68. The maximum value of � (�, � � )
is selected as the radius � . Once the method assigns each facial keypoint to its respective sector on the spider
web, it proceeds to extract a feature vector that characterizes the pose, taking into account the distribution of
landmarks within each sector. This feature vector efectively captures the head’s orientation and position in the
input image. In WSM, a speciically created dataset of reference prototypes, called Lara, is utilized. The 3D model
of a synthetic head is systematically rotated along the three axes, as illustrated in Figure 5. Diferent combinations
of pitch, yaw, and roll angles are employed to generate representative exemplars, from which pose reference
vectors are extracted.

Fig. 5. Samples exhibiting pitch, yaw, and roll axes variations in Lara dataset.

According to the authors, the term "circles" describes the series of concentric circular shapes that comprise the
spider’s web. The term "slices" refers to the individual sections of the web that are formed by the intersection of
two consecutive rays. In addition, a "quarter" is deined as one of the four quadrants of a Cartesian plane that is
centered at the center of the spider-web. Finally, the term "sectors" is used to describe the various sections of
the spider web that are delimited by both circles and slices. The main formulas to compute the position of the
landmark in the spiderweb is:

� = ����
� = 90/�

� = ⌈�/�⌉

(2)

where � is the width of the� slices, � is the relative coordinates of the point in the Cartesian plane centered at O
are used to identify the quarter of the point. Finally, � identify the slice. The chosen spider-web coniguration,
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among those tested, is denoted as "4C_4S_var4", where C represents "circles" and S represents "slices". This
particular coniguration consists of four concentric circles and four slices for each quarter. The "var4" suix
denotes that this is the fourth variant tested, which pertains to diferent ray lengths. An array of values with a
size equal to the number of sectors within the spider’s web is extracted to represent the pose. This is determined
by multiplying the number of slices by four quarters (which is always four) and the number of circles, resulting
in a size of � × 4 × �. Thus, in the case of "4C_4S_var4", the size of the array is 64. The spider-web sectors
are numbered in a clockwise order, starting from the outermost circle and moving towards the innermost one.
Each array component contains information about the number of landmarks that fall within a particular sector.
Further details on the relationship between landmarks and sectors can be found in [7]. To determine the pose in
the extracted array, three regression models were created, each corresponding to the pitch, yaw, and roll axes,
respectively. Figure 6 illustrates the framework of Web-Shaped Model.

Fig. 6. Framework of Web-Shaped Model [2].

3.3 SynergyNet

The methodology introduced in [38], namely SynergyNet, endeavors to attain a superior level of precision
and accuracy to predict complete 3D facial geometry. The framework comprises a two-stage pipeline that
synergistically combines 3D landmarks and 3D Morphable Models (3DMM) parameters to optimize the learning
of 3D facial geometry. In the irst stage, the method performs a preliminary 3DMM regression using images and
utilizes the multi-attribute feature aggregation technique to reine facial landmarks. In the second stage, the
approach employs a landmark-to-3DMM regressor to uncover the embedded facial geometry in sparse keypoints.
The 3DMM regression includes the estimation of parameters for pose, shape, and expression from a single
frame utilizing a backbone network. To create 3D faces, 3DMM base models are used, followed by obtaining 3D
landmarks from facial meshes. The multi-attribute feature aggregation technique is utilized to produce landmark
structures that are more accurate. The method of regressing 3DMM parameters from 3D landmarks in the reverse
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direction is used, presuming that the 3D landmarks provide rough facial geometry. This technique can get rid of
the ambiguity that traditional 3DMM-based techniques frequently have because they only make assumptions
about facial geometry from images.
Below is a concise overview of the primary modules that comprise the SynergyNet framework. The initial

phase involves the backbone network (i.e., MobileNetV2), which is trained to perform two tasks: irst, to regress
the 3DMM parameters (�� , �� , and �� ) for pose, shape, and expression, respectively, and second, to reconstruct
3D face meshes using monocular face images. To accomplish this, the authors employ an existing regression
framework called 3DDFA-V2 [16], which predicts 62-dimensional 3DMM parameters � . After regressing the
���ℎ� parameters, the 3D face mesh corresponding to the input image can be generated and aligned with the
input face; the 3D landmarks �� are extracted by utilizing landmark indices. To further reine the facial keypoints,
the multi-attribute feature aggregation technique is utilized, which involves analyzing a range of characteristics,
including landmark features, image features, and the shape and expression of the 3DMM semantics. Following
that, the reverse direction module is developed to regress 3DMM parameters from the reined landmarks �� ,
utilizing the holistic facial keypoint characteristics. SynergyNet enhances its representation strategy by utilizing
a two-fold approach, incorporating both a forward progression from 3DMM parameters to accurately reined 3D
landmarks and a backward regression from 3D landmarks to 3DMM parameters. The total loss of the method is
composed as

L = �1L3��� + �2L��� + �3L3������
+ �4L� (3)

where the irst term is the loss of the 3DMMmodule, the second term is the loss of the aligned loss of the landmark
module, the third is the reined landmark 3DMM module and the forth module is a self-supervised loss. This
methodology signiicantly enhances overall performance. The overall worklow of SynergyNet is in Figure 7.

Fig. 7. Workflow of SynergyNet [38].

4 EXPERIMENTAL PROTOCOL

4.1 Datasets

Several datasets were presented as the state of the art to solve the deepfake detection problem. However, the
majority of them, as the popular CelebDF [27] presents a high imbalance between real and deepfake videos
number. In addition, they only perform one of the swaps (identity or expression). For this reason, to conduct a
depth ablation study, we prefer to use the FaceForensics++ dataset [34]. This dataset has also been used in a very
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popular deepfake detection challenge [15] of 2022, where an EicientNet [13] based method reached the best
results on creating a Deepfake detector capable of working in an "in the wild" scenario. The task of reconstructing
the original video from the deepfake is still open. In the following, we will provide more details about this dataset.

The FaceForensics++ dataset [34] is a comprehensive repository of facial manipulation data that encompasses
both real and fake portrait videos. The real videos were lawfully obtained from YouTube with the subjects’ explicit
consent, whereas the fake videos were produced utilizing four distinct manipulation techniques: Deepfakes,
FaceSwap, Face2Face, and NeuralTextures. In the following paragraphs, a brief description of these methods is
provided. The dataset contains 4,000 manipulated videos in total, with each manipulation method comprising
1,000 videos. Figure 8 illustrates some samples from the FF+ database.

Deepfakes Deepfakes have gained widespread recognition as a method for face replacement through the use of
deep learning. This approach entails substituting a face in a target sequence with one derived from a source video
or image collection. This technique involves training two autoencoders, which share an encoder, to reconstruct
the images of both the source and target faces. Furthermore, the images are cropped and aligned using a face de-
tector; inally, the encoder and decoder of the source face are employed on the target face to generate a fake image.

FaceSwap FaceSwap is a graphical approach used for transferring facial features from a source image to a
destination image. The method involves using a facial landmark detection algorithm to extract the face region
and then itting a 3D template model with blendshapes. After being adjusted to match the localized keypoints
and textures of the input image, the model is projected onto the target image. To produce a realistic result, the
model is blended with the target image, and color correction methods are utilized.

Face2Face Face2Face represents a revolutionary technology that makes it possible to transfer facial expressions
from a source image to another while simultaneously preserving the identity of the target person. In essence, this
system enables only the facial expressions of diferent characters to be exchanged with one another. Face2Face
implementation entails working with two distinct video input streams and manually selecting keyframes to start
the process. Once the keyframes have been identiied, a facial reconstruction is generated, which can then be
used to recreate the face with diferent expressions and lighting conditions.

NeuralTextures NeuralTextures is a technology that allows for precise manipulation of facial features by utilizing
the neural texture rendering method. This involves extracting the neural texture information of a target face
and training a rendering network corresponding to the target face. The training phase entails ine-tuning the
system with a photometric reconstruction loss combined with an adversarial loss, resulting in highly accurate
facial reproductions.

4.2 Classification Methods

4.2.1 KNN with Dynamic Time Warping. The K-Nearest Neighbor algorithm is a well-known simple and efective
classiication algorithm of supervised learning [35]. The core of the method is represented by the proximity of
the data, which is a discriminant in the prediction process. The � parameter represents the number of neighbors
to take into consideration during the classiication stage. KNN has three main steps:

• The learning data positions and characteristics are used to partition the space into regions, which can serve
as the algorithm’s learning set, despite not being explicitly mandated by the initial conditions.

• To calculate distance, information is depicted through position vectors within a space that has multiple
dimensions. Although Euclidean distance is the norm, there are other types of distance that can be just as
relevant.
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Fig. 8. Example images from the FaceForensics++ dataset.

• The class is allocated to a point that represents an object, provided it’s the most common class among the k
nearest examples to the given object, where distance between points determines proximity. The known set
of objects with accurate classiications is used to select the nearest neighbors.

In our case, the distance used is obtained by the Dynamic Time Warping (DTW). This algorithm proves to be
incredibly advantageous for dealing with sequences that exhibit variations in characteristics over time, where
conventional linear expansion or compression methods of such sequences fall short of delivering satisfying
outcomes. Its application has been widespread, spanning across diferent domains such as speech recognition
[36] and activity recognition [30].

The ideal match between two sequences refers to a match that satisies all the conditions and regulations while
incurring the lowest cost. The cost is calculated by summing up the absolute diferences between the values of
each matched index pair.

In our cases, the sequences are represented by the values of pitch, yaw, and roll extracted by the HPE method
throughout the video.
Deined as � = (��1, ��1, ��1, ..., ��� , ��� , ��� ) and � = (��1, ��1, ��1, ..., ��� , ��� , ��� ) the HPE sequences of

two videos of length � and� , respectively, a warping path is an (�,�) path of length �

� = (�1, ...,��) ���ℎ �� = (�� ,�� ) ∈ [1 : � ]� [1 : �] � �� � ∈ [1 : �] (4)

The path must satisfy the following conditions:

• Boundary The irst and last indices of the sequences must be matched:�1 = (1, 1) and�� = (�,�).
• Monotonicity The mapping of indices between the two sequences must be in a strictly increasing order,
and vice versa: if the indices are � > � in the irst sequence, none of the indices of the second sequence can
be � > � with � matched with � and � matched with � .

• Full matching There should be a one-to-one or one-to-many mapping between the indices in the two
sequences, without any index left unpaired.

In order to evaluate the quality of the warping path, we need a way to quantitatively compare the elements in
the feature sequences � and � . Let be the Head Pose Patterns (HPP) our features space of which ��� , ��� , ��� and
�� � , �� � , �� � belong. We will need a local cost measure that is a function � from ������� to R. By evaluating
the cost for each pair of the sequence, we obtain a cost matrix, � . If � (�� , � � ) is the generic element of this matrix,

ACM Trans. Multimedia Comput. Commun. Appl.



Head Pose Estimation Paterns as Deepfake Detectors • 13

we can deine the total cost of a warping path as:

�� :=

�︁

�=1

� (��� , � �� ) =

�︁

�=1

� (�� , �� ) (5)

The deinition of the warping path involves accumulating the cost of all cells it passes through. A warping path
is considered "good" if its total cost is low and "bad" if its total cost is high. The goal is to ind an optimal warping
path between sequences X and Y, which is deined as the warping path that has the lowest total cost among all
possible warping paths. The optimum warping path’s cells encode the greatest feasible alignment between the
elements of the two sequences, guaranteeing that each element of X is allocated to at least one element of Y and
vice versa. This leads to the deinition of the DTW distance, abbreviated as DWT, as the lowest cost of the best
warping path between sequences X and Y:

��� (�,� ) =���{�� (�,� ) |� is an (�,�) −warping path (6)

Since the number of possible warping paths is exponential, dynamic programming is necessary to obtain a
feasible computation when � and � are large. The initial problem can be divided in subproblems and their
solutions combined to obtain an overall solution. The concept of DTW is to deduce an optimal warping path
for the original sequences from optimal warping pathways for truncated subsequences. This concept may then
be applied recursively. Given � (1 : �) = (�1, ..., �� ) for � ∈ [1 : � ] and � (1 : �) = (�1, ..., � � ) for � ∈ [1 : �], we
deine their distance as ��� (� (1 : �), � (1, �)). This is a matrix � that can be deined as the accumulated cost

matrix. Notice that � (�,�) = ��� (�,� ). The cumulative cost matrix D is generated repeatedly using a nested
loop in the irst phase. The ideal warping path is determined using a backtracking approach in the second half.
The detailed pseudocode to compute the DTW is shown in Algorithm 1.

In our case, DTW is particularly efective at aligning sequences of diferent lengths. We have diferent lengths
because the video may contain a diferent number of frames or because the HPE method selected is not able to
ind the face when extreme rotations occur. For this reason, we have that also in the same video, but in its real
and its fake versions, we may obtain sequences of diferent lengths.
In Figure 9, we depicted the diferences in the comparisons between two sequences with Euclidean distance

and with DTW. As can be seen, the DTW does not compare frames based on their order. On the contrary, it is
able to handle disaligned sequences.

Fig. 9. An example of the diferences between the use of Euclidean distance and DTW to align two sequences.

4.2.2 Deep Learning Models. We also study the efectiveness of modeling head poses with deep learning ap-
proaches. In particular, we propose two methods that process the sequences of head yaw, pitch, and roll using
two orthogonal approaches: 1D convolutions (Fig. 10) and recurrent neural networks (Fig. 11).
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Algorithm 1 The DTW algorithm

Require: C
Ensure: D, The optimal path P’
� (�, 1) =

∑�
ℎ=1� (�, 1) with � ∈ [1 : � ]

� (1, �) =
∑�

ℎ=1
� (1, �) with � ∈ [1 : �]

for � = 2, ..., � and � = 2, ..., � do

� (�, �) = � (�, �) +���{� (� − 1, � − 1), � (� − 1, �), � (�, � − 1)}
end for

� = 1
�� = (�,�)

while �� ≠ (1, 1) do
l=l+1
(�, �) = ��−1
if i=1 then

�� = (1, � − 1)
else if m=1 then

�� = (� − 1, �)
else�� = �����{� (� − 1, � − 1), � (� − 1, �), � (�, � − 1)}
end if

end while

� = �

� ′ = (��, ��−1, ..., �1)

return � ′, �
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Fig. 10. Convolutional model architecture.
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Fig. 11. Recurrent model architecture.

1D Convolution Model. To model time series, 1D convolutions have shown remarkable results [22]. We adapt
this idea to our framework by considering each video as a sequence of head pose patterns, as done in Sec. 4.2.1.
Therefore, a sample is a sequence of {��� , ��� }, ��� , where the subscripts � , �, and � respectively denote pitch, yaw,

and roll, and � indicates the temporal index in the time series. In short, a sample can be denoted as x ∈ R�×3,
where � is the number of frames in the video.

The rationale behind the usage of 1D convolutions is that a kernel of size � can aggregate a neighborhood
of samples in a sliding window fashion across the time sequence and a richer description can be provided by
increasingly adding information along the channel dimension while pooling the temporal one.
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We build a model by stacking three 1D convolutional layers with kernel sizes 6, 3, and 3, respectively, mapping
the number of channels from 3 to 6, 8, and 12. For every layer, we use stride one and padding zero, and we apply
a ReLU activation followed by a 1D max pooling with size 3 and stride 2. The 1D max pooling helps in creating
a more compact representation, which reduces the extent of the temporal pattern. To make the model free to
process arbitrary length sequences, we then perform a max reduction over the temporal dimension, yielding a
12-dimensional vector that is processed by a inal classiication module made of a multilayer perceptron with two
layers and a hidden dimension of 4. A sigmoid activation is used to generate classiication scores.

Recurrent Model. Recurrent Neural Networks (RNN) are the most common deep learning based architecture to
process temporal data. These networks update an internal hidden layer while processing the inputs sequentially,
one at a time. We exploit a particular instance of an RNN named Gated Recurrent Unit (GRU) [10], which, similarly
to LSTMS [19], leverages an update gate and a reset gate to retain or discard information from past timesteps. We
therefore modify the 1D convolution network by inserting a cascade of two GRU layers to perform temporal
pooling after the signal has been pre-processed by the 1D convolutional layers. In this way, we replace the max

operation along the temporal axis with a trainable set of weights that learns to condense the history of the
whole sequence into a hidden state. The two GRU layers that we introduce have a number of hidden states equal
to 24 and 36 and are followed by a linear layer with ReLU activation and a hidden dimension of 8, and a inal
classiication layer with a single output followed by a sigmoid.

5 RESULTS

In this section, we will present our ablation studies and the inal accuracy for the diferent conigurations of the
proposed architectures.

5.1 Results of KNN with DTW

The KNN method has as a parameter the number of neighbors to consider. The DTW method needs to know the
warping parameter. The warping parameter indicates every how many values to align the sequences. The smaller
this value is, the higher the computational cost will be. This is because a small value indicates sequences that
need to be aligned more often. We started with � = 1 to examine the ideal warping window. In Table 2 we show
this irst study using FSA-Net as the HPE method. Even if the number of iterations increases, the results do not
show better results when warping windows are smaller. This happens not only when deepfakes are obtained
by FaceSwap but also with Face2Face. Since the length of the sequences is 300, we can claim that the optimal
coniguration in terms of computational cost and performance is represented by sequences aligned three times.

The time required to perform the estimation is directly proportional to the number of iterations. This because
the iterations depend inversely on the warping windows dimension. The higher the number of warping windows,
the lower the frequency of sequence alignment. Less alignment correspond to less iterations to perform and, as a
consequence, a lower computational time required.
When we test other values of � we can notice that performances does not increase. In some cases, they also

decrease. This indicates that when the correct warping window is selected, the best match to perform classiication
is represented by the closest point.
FSA-Net presented better performances on FaceSwap compared to Face2Face. This is easily explainable by

the fact that FaceSwap has a "bad" construction of deepfake. In some cases, they are also easily detected by the
human eye. In general, the behavior of this method is the same with respect to the parameters � and� when we
compare FaceSwap and Face2Face.
As we can see in Table 3, the results are considerably worse than FSA-Net. The behavior of the parameters

� and � is the same in FSA-Net and also in FaceSwap and Face2Face. However, overall performance results
decreased signiicantly.This indicates that SynergyNet provides real and fake HP sequences with very similar
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Table 2. Performances of the FSA-Net HPE method on the FF++ Dataset.

FF++ with FSA-Net Original vs FaceSwap

k value Warping window # of iterations Accuracy f1-score Real f1-score Fake

1 100 6368 0.9 0.9 0.9

1 50 12746 0.9 0.9 0.9

1 25 25472 0.87 0.88 0.87

3 100 6368 0.9 0.9 0.9

5 100 6368 0.85 0.87 0.83

FF++ with FSA-Net Original vs Face2Face

k value Warping window # of iterations Accuracy f1-score Real f1-score Fake

1 100 6368 0.82 0.82 0.81

1 50 12746 0.76 0.76 0.77

1 25 25472 0.78 0.79 0.77

3 100 6368 0.8 0.82 0.78

5 100 6368 0.63 0.7 0.51

values. Another important diference between the behavior of SynergyNet and FSA-Net is represented by the
F1-score. SynergyNet is less balanced between the real and fake classes. In the majority of cases, it prefers to
classify sequences as real, and the fake sequences are more often misclassiied.

Table 3. Performances of the SynergyNet HPE method on the FF++ Dataset.

FF++ with SynergyNet Original vs FaceSwap

k value Warping window # of iterations Accuracy f1-score Real f1-score Fake

1 100 6368 0.54 0.59 0.48

1 50 12736 0.54 0.52 0.55

1 25 25472 0.53 0.56 0.51

3 100 6368 0.52 0.54 0.5

5 100 6368 0.53 0.53 0.53

FF++ with SynergyNet Original vs Face2Face

k value Warping window # of iterations Accuracy f1-score Real f1-score Fake

1 100 0.48 0.58 0.32

1 50 0.5 0.52 0.47

1 25 0.5 0.55 0.44

3 100 0.47 0.53 0.39

5 100 0.49 0.55 0.42

Also in the case of WSM, the accuracies are not satisfactory. However, if we compare the F1-score of real and
fake samples, the situation is more balanced. It means WSM is not good to classify real and fake sequences, but it
is able to estimate real end fake in the same way. Only in two cases is the diference higher, when the k value is 3.
The use of a synthetic model in an HPE method (as WSM) may improve the latter’s ability to generalize and its
overall performance. However, it does not afect its performance on a deepfake detection task, demonstrating
that the efectiveness of one method over another does not depend on the dataset on which the method has been
trained.
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Table 4. Performances of the WSM HPE method on the FF++ Dataset.

FF++ with WSM Original vs FaceSwap

k value Warping window # of iterations Accuracy f1-score Real f1-score Fake

1 100 6368 0.58 0.55 0.6

1 50 12736 0.54 0.54 0.54

1 25 25472 0.54 0.54 0.53

3 100 6368 0.57 0.45 0.65

5 100 6368 0.59 0.51 0.65

FF++ with WSM Original vs Face2Face

k value Warping window # of iterations Accuracy f1-score Real f1-score Fake

1 100 0.48 0.5 0.46 0.32

1 50 0.48 0.51 0.45 0.47

1 25 0.46 0.48 0.44 0.44

3 100 0.49 0.45 0.52 0.39

5 100 0.45 0.47 0.43 0.42

Based on those results, we can claim that FSA-Net is a good HPE method to distinguish between the real and
fake videos. On the contrary, WSM and SynergyNet, independently of the coniguration used, do not produce
suiciently high results.

This suggests that when we want to perform Deepfake detection by using HPE methods, the kind of method is
more important than the classiication method parameter. We can also observe that a good HPE method for this
purpose is also stable respect to the diferent deepfake method used.
In Figure 12 we analyze the irst video sequence of FF++ to examine the discrepancy between real and fake

videos from the point of view of the HPE method. As can be noticed, SynergyNet shows very few diferences
between a real and fake sequence; this can be the cause of the bad performances on the deepfake detection
problem. Synergynet has lattened patterns, this can be the result of their use of a 3DMM that limits extreme
variations between two poses. Even if the resulting is a HPE method with a lower mean error, the same is not
suitable to perform deepfake detection. On the contrary, WSM shows a higher level of freedom in the variations
of the poses. However, real and deepfake video pattern have several point in common. The optimal coniguration
of the web-shape for the HPE task is, in our opinion, not suicient to highlight the diference between a real and
a deepfake video. The efect of a denser spider web could be studied. As we expect, FSA-Net is the HPE method
that maximize the diferences between real and deepfake videos. Peak are not correspondent, and fake videos
seem to be more lattened compared to the real ones. The optimal results obtained by FSA-Net are probably the
consequence of the multi-view features that they adopt. In particular, the authors focused on spatial feature
aggregation prior to adopting regression.

5.2 Results with Deep Learning Methods

Here we report the results obtained by our two deep learning approaches that process sequences of head poses.
Both the 1D convolutional model and the recurrent model were trained using the Adam optimizer with a learning
rate of 0.0005. To train the models using batches of samples, we zero-padded all the samples to match the longest
sample in every batch.
In Tab. 5 we show the results obtained by the 1D convolutional model on the FF++ dataset for the FSA-Net,

SynergyNet, and WSM head pose predictors and for two diferent deepfake approaches: faceswap and face2face.
We train a diferent model for every setting, treating it as a binary classiication problem, i.e. feeding to the
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Fig. 12. The comparisons of the discrepancy between real and fake head poses extracted by FSA-Net, SynergyNet and WSM.

Data were extracted by the first video of the first subject of FF++.

network the sequences head poses estimated on the original videos and on the attacked videos. As for the DTW
approach, for every setting we use a single split of the dataset by leveraging 80% of the data for training the
model and the remaining 20% for testing. From the results, it can be seen that the model struggles to deal with
Faceswap, obtaining slightly above random results. More accurate results are instead obtained by the model
against Face2Face, without however noticing big diferences when using a head pose descriptor rather than
another.
Interestingly, looking at Tab. 6 the recurrent model instead shows an opposite trend. In this case, in fact,

we obtain better results against Faceswap, with poor performances against Face2Face. We attribute the higher
accuracy on Faceswap with the recurrent model to its improved capacity to model temporal dynamics with
respect to the 1D convolutional model. In fact the latter makes a temporal reduction of the temporal dimension via
max pooling, thus temporal patterns can only be captured locally within the receptive ield of the convolutions.
On the other hand, the recurrent model can observe the whole sequence and identify longer-term patterns. At
the same time, the higher complexity of the recurrent model leads to higher overitting in Face2Face, where the
convolutional model manages to ind local inconsistencies more efectively. Overall, however, we notice that
both deep learning methods obtain results that are better or on par compared to KNN with DTW when using
SynergyNet and WSM (see Tab. 3 and Tab. 4). Yet much lower results are obtained when compared to KNN with
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DTW using FSA-Net. We attribute this gap to a training issue due to overitting and a low amount of training
data, which only afects learning-based methods. In addition, RNN models are known to sufer from vanishing
and exploding gradient issues when long sequences are used for training.

Table 5. Performances of the 1D Convolution Model on the FF++ Dataset.

Training coniguration (FF++) Accuracy f1-score real f1-score fake

FsaNet_Faceswap 0.55 0.57 0.48

FsaNet_Face2Face 0.61 0.38 0.56

SynergyNet_Faceswap 0.57 0.47 0.50

SynergyNet_Face2Face 0.61 0.50 0.65

WSM_Faceswap 0.58 0.59 0.49

WSM_Face2Face 0.60 0.51 0.55

Table 6. Performances of the recurrent model on the FF++ Dataset.

Training coniguration (FF++) Accuracy f1-score real f1-score fake

FsaNet_Faceswap 0.62 0.56 0.68

FsaNet_Face2Face 0.51 0.01 0.67

SynergyNet_Faceswap 0.62 0.52 0.65

SynergyNet_Face2Face 0.57 0.55 0.55

WSM_Faceswap 0.61 0.51 0.67

WSM_Face2Face 0.51 0.66 0.06

5.3 Cross-dataset validation and comparisons with the SOTA

From the results previously obtained, it is clear that the best coniguration for HPE-based systems uses FSA-Net
as the head pose extractor and KNN with DTW as the classiier. The best parameters in terms of computational
cost and performance are � = 1 and � = 100. For this reason, we will use the latter to perform the following
experiments on the remaining part of FF++: the cross-valdation experiments.

In Table 7 we show the results of the method on all of the subsets of FF++. On the main diagonal, we can ind
the results for each subset; on the remaining parts of the table are the cross-dataset evaluations.

Table 7. The Cross-Dataset evaluation performed on the subset of FF++. The HPE method is FSA-Net with k=1, w=100.

FF++ Cross-Dataset Evaluation

Train/Test DeepFake Face2Face FaceSwap NeuralTexture

DeepFake 0.82 0.83 0.88 0.89

Face2Face 0.8 0.82 0.88 0.88

FaceSwap 0.8 0.84 0.9 0.91

NeuralTexture 0.81 0.84 0.91 0.91

As we can observe, the HPE-based method is very stable with respect to cross-validation. All of the results
present an accuracy ≥ 0.8. In particular, we can notice that all of the training sets provide the best transferability
on neural texture (an expression swap approach). The worse transferability is on the deepfake subset (an identity
swap approach).
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In order to evaluate if the HPE methods proposed here to detect deepfakes are in line with the state of the art,
we perform the comparisons in this section.

In Table 8 are shown the results of diferent methods introduced in section 2. The best results in mean are
obtained by Liu et al. [28], with a method based on semantic discrepancy. The mean accuracy of the SOTA is 0.831.
The HPE-based method reach 0.86 in accuracy, higher than the SOTA mean, and surpass 4 out of 10 of them.
Considering that the HPE-based method does not use speciic deepfake detector features, but instead uses the
output of existing methods, this is a considerable result. We can also notice that, when compared with others, the
HPE-based system is very stable with respect to the diferent deepfake generators. The mean diference between
the accuracy on the diferent sets is 0.081 in the SOTA, and only 0.042 in the HPE-based technique.

Table 8. Comparisons with the state of the art on Face2Face and FaceSwap from FF++. The HPE-based method used is

FSA-Net with k=1, w=100.

Method Year DeepFake Face2Face FaceSwap NeuralTexture Mean (FF++)

Khalid et al. [24] 2023 0.98 0.62 0.98 0.75 0.83

Xu et al. [41] 2023 0.92 0.92 0.91 0.91 0.92

Liu et al. [28] 2023 0.96 0.98 0.99 0.92 0.96

Nirkin et al. [31] 2022 0.94 0.8 0.84 0.74 0.83

Ilyas et al. [21] 2022 0.93 0.92 0.93 0.78 0.89

Heo et al. [18] 2021 0.96 0.93 0.95 - -

Demir et al. [14] 2021 0.93 0.59 0.91 0.57 0.75

Chugh et al. [12] 2020 0.94 0.93 0.95 - -

Xie et al. [40] 2020 0.93 0.91 0.74 0.65 0.81

Khalid et al. [25] 2020 0.88 0.71 0.86 0.87 0.83

Rossler et al. [33] 2019 0.96 0.86 0.9 0.8 0.88

Afchar et al. [5] 2018 0.87 0.56 0.61 0.4 0.61

HPE-based 0.82 0.82 0.9 0.91 0.86

In Table 9 we present the cross-dataset evaluation with the authors Khalid et al. [24] who also performed
the same experiments. In particular, they focused on the transferability between indentity swap and expression
swap. They trained the method on both the identity and expression swaps, respectively, while we prefer to train
with the two subsets separately to ensure the data remain balanced. As can be noticed, in the identity swap,
we obtained far higher results than Khalid et al. [24], outperforming the test accuracy on NeuralTextures of 0.3
and 0.28 using FaceSwap and DeepFake respectively. Less evident are the discrepancy between our and their
performances by testing on Face2Face and on the Expression Swap as train set. We can claim that the FSA-Net
based method is more stable to cross-validation than the method at the SOTA.

In addition, it is essential to underline that the method by Khalid et al. [24] trained on FS and DF considered them
as a single dataset. This means they have the advantage of a more rich dataset to extract deepfake characteristics.
On the other side, we only trained on one set at a time. This allow us to observe the performances obtained by
learning the characteristics of each dataset and lighten the training process.
Furthermore, it has to be noted that transferability from Face2Face and NeuralTextures to DeepFake and

FaceSwap is better than the other way around. In fact, we can group the approaches into two distinct categories:
DeepFake and FaceSwap perform an identity swap, rendering faces that have the same pose and expression of the
source, yet changing the identity to match a given target; on the contrary, Face2Face and NeuralTextures apply
a target expression maintaining the source identity unaltered. This means that Face2Face and NeuralTextures
result in more realistic rendering since the task is less invasive and fewer alterations are required (see. Fig. 8). As
a direct consequence, detecting expression swaps is in general harder. Thus, a model trained on Face2Face and
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Table 9. Cross-datasets and cross-domain comparisons with the SOTA. The HPE-based method used is FSA-Net with k=1,

w=100. DF=DeepFake, FS=FaceSwap, F2F=Face2Face, NT=NeuralTextures.

Identity Swap as Train - Expression Swap as Test

Comparisons Train NT F2F

Khalid et al. [24] FS+DF 0.61 0.73

HPE-based FS 0.91 0.84

HPE-based DF 0.89 0.83

Expression Swap as Train - Identity Swap as Test

Comparisons Train DF FS

Khalid et al. [24] F2F+NT 0.7 0.73

HPE-based F2F 0.8 0.88

HPE-based NT 0.81 0.91

NeuralTextures needs to discover more subtle attacks in the image, which leads to improved transfer capability
towards more macroscopic attacks such as FS and DF.

6 CONCLUSIONS

Deepfake videos put cybersecurity, privacy, and democracy at risk. They may be used to make fake and edited
videos of individuals that seem real yet have been created artiicially using artiicial intelligence algorithms. In
this paper, we have presented a study regarding the usage of head pose estimation approaches to detect deep fake
tampered videos. We used three diferent head pose estimation approaches, showing that real and fake videos
tend to exhibit diferent distributions. We ofered two diferent lines of investigation: a distance-based approach
using KNN with Dynamic Time Warping and a learning-based approach, training both a 1D convolutional model
and a recurrent model for deepfake detection. From our experiments it appeared that head pose estimation
data can indeed be used efectively to identify tampered videos, however, training neural network methods
for this task is not trivial. On the other hand, the KNN with DTW approach proved to be extremely efective
in addressing this task. The indings of employing HPE-based approaches on the FF++ dataset reveal that the
performance diference may be linked to the speciic head pose extraction method utilized. In particular, when
utilized as a features extractor in conjunction with KNN and DTW classiication, FSA-Net displayed performance
similar to the state of the art in our study. The same yielded consistent results in cross-dataset validation, even
when the datasets evaluated were used for various objectives in making the deepfake videos (identity swap and
expression swap). In particular, we obtained a mean accuracy of 0.86 on the overall FF++. The mean accuracy on
the identity swap is 0.86 and the mean accuracy on the expression swap is 0.865, demonstrating the method with
FSANet+DTW is stable compared to diferent kind of deepfakes. The experiment carried out sets the path for a
more extensive evaluation of the usage of HPE approaches to detect deepfake patterns. In the future, more HPE
approaches, particularly those using a pose estimation methodology similar to FSA-Net, may be researched. It
would also be interesting to see whether various extractor settings that did not yield ideal results for HPE would
actually perform better for the task at hand.
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