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ABSTRACT
Memory Networks are models equipped with a storage component
where information can generally be written and successively re-
trieved for any purpose. Simple forms of memory networks like
the popular recurrent neural networks (RNN), LSTMs or GRUs,
have limited storage capabilities and for specific tasks. In contrast,
recent works, starting from Memory Augmented Neural Networks,
overcome storage and computational limitations with the addition
of a controller network with an external element-wise address-
able memory. This tutorial aims at providing an overview of such
memory-based techniques and their applications in multimedia. It
will cover an explanation of the basic concepts behind recurrent
neural networks and will then delve into the advanced details of
memory augmented neural networks, their structure and how such
models can be trained. We target a broad audience, from beginners
to experienced researchers, offering an in-depth introduction to an
important crop of literature which is starting to gain interest in
the multimedia, computer vision and natural language processing
communities.
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1 INTRODUCTION
Memory Networks are neural networks that provide a storage com-
ponent where information can bewritten and successively retrieved.
The simplest form of memory network can be found in recurrent
neural networks (RNN), like Long-Short Term Memories (LSTM)
[11] or Gated Recurrent Units (GRU) [4]. Recurrent neural networks
have found large use in multimedia applications, in particular to
process sequential data such as text or videos [1–3, 12, 22].
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Such architectures however suffer from instability problems
when processing long term dependencies and memory is a single
hidden state vector that encodes all the temporal information. In
recurrent neural networks, memory is addressable as a whole and
the ability to address individual elements of knowledge is missing.
This ability is necessary to apply algorithmic manipulation to the
input data and perform complex tasks, especially over long time-
spans. In fact, state to state transition is unstructured and global.
Being the state updated at each time-step, eventually it fails tomodel
very long-term dependencies. Finally, the number of parameters
is tied to the size of the hidden state. So, adding knowledge from
the external environment, necessarily implies increasing the size
of the state.

Recent works have proposed Memory Augmented Neural Net-
works [9, 24] to overcome the limitations of RNNs. The principal
characteristic of these models is the usage of a controller network
with an external elementwise addressable memory. This is used
to store explicit information and access selectively relevant items.
The memory controller is trained to dynamically manage memory
content, optimizing predictions. Differently from RNNs, state to
state transitions are obtained through read/write operations and a
set of independent states is maintained. An important consideration
is that in Memory Networks the number of parameters is not tied
to the size of the memory, i.e., increasing the memory slots will not
increase the number of parameters.

The first embodiment of a MANN has been Neural Turing Ma-
chine (NTM) [9], introduced to solve simple algorithmic tasks,
demonstrating large improvements when compared to RNNs. The
usage of an external memory, in fact, allows the network to store
knowledge that cannot be forgotten unless deleted by the model
itself. At each timestep the network can perform reasoning involv-
ing all previous observations and can perform data manipulation
to emit its outputs. Follow-up works have extended and refined the
formulation of the NTM. Recently, several declinations of MANNs
have been proposed to tackle more complex problems such ob-
ject tracking [14, 25], visual question answering [13, 15], person
re-identification [20], action recognition [10], garment recommen-
dation [5–7] and trajectory prediction [16–18].

A notable distinction between different types of MANNs can
be found in its usage during training and inference. Two different
approaches exist: episodic and persistent memory. An episodic
memory is a working bank, where data gets manipulated across
time-steps to perform active reasoning. The goal of the memory
controller is to learn what to store and what to erase after the
current sample has been observed. The memory bank will therefore
contain a summary of an observed sequence. Similarly to RNNs,
the memory is wiped out after each sequence has been observed
and the output has been predicted. Examples of episodic Memory
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Augmented Neural Networks are Neural Turing Machines [9], End-
to-end Memory Networks [21], Key-Value Memory Networks [19]
and SMEMO [18].

On the contrary, a persistent memory acts as a long-term storage
where samples are gathered during the training phase. A Memory
Augmented Neural Network with persistent memory need to learn
what samples are important with respect to what has already been
stored. Thus, the controller is trained to decide whether to add or
remove observations in order to perform well on a downstream
task. Examples of persistent Memory Augmented Neural Networks
are MANTRA [16, 17], VQA with MANN [15], GR-MANN [5–7].

Interestingly, Memory Networks are tied with a concept that
is nowadays extremely important for machine learning and mul-
timedia applications: attention. To understand this, we can think
at the definition of memory itself. Talking of memory in computer
systems we refer to their storage capacity. In this sense computers
have much better memory than people as they are able to store ev-
erything. Memory in humans instead is different. Human memory
has a limited capacity, and thus attention determines what will be
encoded. Human memory is rather the ability to select information
and attend to that. Indeed, memory is attention over time. Attention
and memory are important features of human cognition and they
cannot operate without each other.

These intertwined concepts have been used differently in deep
learning systems, with attention being at the center of the Trans-
former architecture [23]. Transformers are a type of Encoder-Decoder
model that have been developed to solve the problem of sequence
transduction, or neural machine translation.

For models to perform sequence transduction, it is necessary to
have some sort of memory. Thanks to the self-attention mechanism,
every element of an input sequence is matched against each other,
in practice reducing a sequences to a set of tokens processed in
parallel. As a direct consequence, transformers are not influenced by
the distance between tokens, thus there is no long-term forgetting.
This also makes transformers are more efficient than sequence-
based models since matrix multiplication are performed between
weights and whole sequences instead of individual tokens.

Nonetheless, limitations of transformers have been studied with
respect to memory [8]. First of all, transformers are not able to
track long sequences and process hierarchical inputs. If a long
(potentially, unlimited) stream has to be observed, the complexity
of the transformer will scale quadratically with the input length,
without the possibility to update an internal state as the sequence
is observed.

Another important observation is that only a fixed number of
transformations can be applied to its internal states. Since both
attention and feed-forward sublayer contain a fixed number of
transformations, the total number of transformations between the
input and output is limited by the depth of the model instead of
depending on the complexity (length) of the input. Finally, at each
layer, the representations for the input sequence are treated in
parallel. As a consequence, a transformer does not leverage higher
level representations from the past to compute the current represen-
tation. To address such limitations, a Memory Augmented Neural
Network implementing a transformer with feedback memory has
been proposed [8].

2 TUTORIAL OVERVIEW
The proposed tutorial aims at providing an overview of machine
learning techniques exploiting memory networks and their appli-
cations in multimedia. The tutorial will cover an explanation of
the basic concepts behind recurrent neural networks and will then
delve into the advanced details of MANNs, their structure and how
such models can be trained. We expect the event to be beneficial for
the participants, offering an in-depth introduction to an important
crop of literature which is starting to gain interest in the multime-
dia, computer vision and natural language processing communities.
The tutorial targets a broad audience, from beginners to experi-
enced researchers, providing basic concepts as well as overviews
of advanced machine learning techniques.
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