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ABSTRACT
In this paper, we are interested in understanding how customers
perceive fashion recommendations, in particular when observing
a proposed combination of garments to compose an outfit. Auto-
matically understanding how a suggested item is perceived, with-
out any kind of active engagement, is in fact an essential block
to achieve interactive applications. We propose a pixel-landmark
mutual enhanced framework for implicit preference estimation,
named PLM-IPE, which is capable of inferring the user’s implicit
preferences exploiting visual cues, without any active or conscious
engagement. PLM-IPE consists of three key modules: pixel-based
estimator, landmark-based estimator and mutual learning based
optimization. The former two modules work on capturing the im-
plicit reaction of the user from the pixel level and landmark level,
respectively. The last module serves to transfer knowledge between
the two parallel estimators. Towards evaluation, we collected a real-
world dataset, named SentiGarment, which contains 3, 345 facial
reaction videos paired with suggested outfits and human labeled
reaction scores. Extensive experiments show the superiority of our
model over state-of-the-art approaches.
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1 INTRODUCTION
Online retailers hinge on the effectiveness of recommendation sys-
tems to suggest products to users [4, 9, 12, 28, 30], which not only
increases the profit for retailers but also convenience for users. In
a sense, such systems become more effective when users create
an online profile or when previous purchases and preferences are
made available. Even first-time customers can be tracked online
via their browsing history as they visit the shop. However, the
same cannot be said for physical retailers, where no such data is
available even for regular customers. Although some shops have
resorted to asking the user to navigate a digital marketplace from
inside the shop using a terminal or touchscreen to collect useful
cues, they still require certain forms of engagement from the user,
who is often not willing to interact or share personal tastes and
preferences. This leaves the retailer with the problem of addressing
user needs without any prior knowledge or feedback.

In this paper, we address the issue by developing a computer
vision-based system capable of inferring user preferences without
any active or conscious engagement. We propose a pixel-landmark
mutual enhanced framework for implicit preference estimation,
named PLM-IPE, which jointly captures the facial reaction at both
pixel level and landmark level. Specifically, PLM-IPE consists of
three key modules: pixel-based estimator (PBE), landmark-based
estimator (LBE), and the mutual learning based optimization. The
pixel-based estimator aims to capture the video content at the pixel
level, while the landmark-based estimator works on characterizing
the user’s facial expression more explicitly at the landmark level,
where the local movements of his/her facial keypoints are modeled.
The mutual learning based optimization module targets at mutu-
ally transferring knowledge between the two parallel estimators
with the underlying philosophy that there should be some latent
consistency between the results of the two estimators. To evaluate
our proposed model, we create a dataset, named SentiGarment, by
collecting 120 volunteers’ facial reactions to the provided fashion
outfits. Ultimately, SentiGarment consists of 3, 345 samples, each of
which comprises a micro-video that contains the volunteer’s facial
reaction to the given fashion outfit and his/her subjective degree
of interest towards the observed outfit.
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Figure 1: Architecture of our proposed system, comprising
three modules: the pixel-based estimator, landmark-based
estimator, and the mutual learning based optimization.

The main contributions of this paper are the following:
• We define the task of the visual-based implicit preference es-
timation, i.e. inferring the degree of interest of a user towards
an observed item only through facial expression analysis of the
user.

• We propose a pixel-landmark mutual enhanced framework for
implicit preference estimation, named PLM-IPE, which compre-
hensively analyzes the human facial expression from both pixel
level and landmark level, and employs mutual learning to boost
the model performance.

• We present SentiGarment, a dataset of 3, 345 facial-reaction
videos with manually annotated user preference labels. Experi-
ments on the dataset prove the effectiveness of our approach.

2 RELATEDWORK
The analysis of human emotions based on facial responses is a cen-
tral computer vision task that has been studied for decades. Both
spontaneous and posed facial expressions represent an effective
non-verbal means of communication used to convey emotions, and
numerous studies [1, 8, 13–15, 18, 19, 24, 29, 35] have proposed
different ways to categorize and understand them. For a compre-
hensive survey, we refer the reader to [17, 23]. Both posed and spon-
taneous expressions are yet characterized by the fact that they serve
to communicate, and so are voluntary. A different category of emo-
tional responses is known in literature as micro-expressions [34].
These are subtle and short involuntary facial movements, which
are challenging to detect and recognize.

In practice, possible emotional responses are way more complex
and can be expressed via a multitude of subtle facial expressions. To
represent such a complexity, a different paradigm is being used that
models the possible emotional states as continuous values in valence
and arousal space [3]. Valence shows how positive or negative an
emotional state is, whilst arousal shows how passive or active it is.
Given the applicability of such model in realistic scenarios, several
methods are being developed to estimate valence and arousal from
images or videos e.g. [2, 6, 21, 37]. Simultaneously, researchers are
putting a lot of effort in collecting datasets with annotated valence
and arousal values to further improve this research direction. One of
the largest annotated datasets is the AffWild database [22], which
contains a large set of “in the wild” face images with valence and

arousal annotations, provided by experts. However, the expressions
contained in this kind of datasets are still too strong to resemble
an involuntary reaction. Given the slightly perceivable nature of
spontaneous reactions, the lack of methods for their estimation is a
direct consequence of the absence of proper data.

3 METHOD
3.1 Problem Formulation
As a pioneer study, we treat the implicit preference estimation as
a three-class classification. Namely, we only estimate the user’s
preference as positive, neutral, and negative. Suppose we have a
set of N videos X = {xi }

N
i=1 that record the users’ reactions, where

xi is the i-th video. Each video is associated with its ground truth
preference label yi ∈ R3 of the human reaction, which is a 3-D
one-hot vector. We aim to develop a vision-based reaction estimator
capable of automatically inferring the implicit preference of the
user toward an item based on the video showing his/her reaction.

3.2 Pixel-based Estimator
CNN-based approaches play an important role in video analysis [7,
32], since they capture the video content from the detailed pixel
level. Due to the remarkable performance of the deep 3-dimensional
convolutional networks (3D ConvNets) [31] in this research line,
we adopt it to encode the content of the input video xi and derive
its corresponding pixel-based feature f Pi . 3D ConvNets consist of
eight convolutional layers and two fully-connected layers, where a
respective 3D pooling layer is linked behind the first, second, fourth,
sixth and eighth convolutional layers. In particular, following the
settings proposed in [31], we split the video xi into a set of non-
overlapped 16-frame clips, and hence re-define the video with the
representation of Xi ∈ Rl×w×h×c , where l = 16 is the number of
frames, c is the number of channels, h and w are the height and
width of the frame, respectively. We then feed the video clips into
a 3D ConvNet and use its output, i.e., a 4096-dimensional vector, as
the pixel-based feature f Pi ∈ R4096 of the input video xi as follows,

f Pi = 3DConvNet(Xi ). (1)

Thereafter, we adopt a fully-connected layer to derive the pref-
erence distribution over three categories, i.e., positive, neutral, and
negative, of the user in each video as follows,

ŷPi = so f tmax(Wp f
P
i + bp ), (2)

whereWp ∈ R4096×3 and bp ∈ R3 are the parameters of the fully-
connected layer. so f tmax(·) is the softmax active function.

3.3 Landmark-based Estimator
Along with the pixel-based approach, we rely on a landmark-based
approach which is more explicitly related to facial expressions and
their underlying semantics. Facial landmarks are a set of keypoints
that localize salient regions in a face such as mouth, nose and eye-
brows. Such keypoints are capable of describing local deformations
of a face simply through their relative positions. Inspired by [25],
that exploits facial landmarks to identify Action Units, we build
a facial descriptor characterizing local movements of regions con-
necting the landmarks.
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First, for each video xi we localize the face in each frame j and
crop it to remove background noise. We then estimate facial land-
marks using [5], which yields a set of 68 2-dimensional keypoints
on the image. In order to achieve invariance to scale, translation and
rotation, we align each detected face in the video stream using the
identified landmarks. Following [25], we then divide the face into
36 regions by connecting adjacent keypoints. Local movements of
these regions have been shown to correlate with facial Action Units
and can therefore be associated to the emotions of the subject. The
rationale of this idea is to obtain a descriptor that carries informa-
tion about such emotions in order to predict the observed reaction
of the user. To obtain the final frame-wise descriptor we compute
dense optical flow using [16] and we bin each motion vector into
its corresponding facial region, thus generating a motion histogram
distributed over the face. We split orientation and magnitude for
each vector, obtaining two 36-dimensional descriptors hOij and h

M
ij

for frame j of video xi . The histograms are then normalized and
concatenated into a final 72-dimensional landmark-based descriptor
hLi j = h

O
ij ⊕ hMij .

Since the goal is to estimate the implicit preference for the user
in each video, we feed the sequence of descriptors for each video
into an LSTM-based prediction model. Consequently, we compress
the whole sequence of descriptors into a latent representation as,

f Li = LSTM(hLi j ). (3)

where f Li ∈ RH denotes the latent representation of the video xi ,
and H is the dimension of the representation.

Similar to the pixel-based estimator, we exploit a linear layer
followed by a softmax activation to map the video descriptor f Li
into a probability distribution ŷLi over the preference labels,

ŷLi = so f tmax(WL f
L
i + bL) (4)

withWL ∈ RH×3 and bL ∈ R3 the learnable parameters of the
layer.

3.4 Mutual Learning based Optimization
In this work, we cast the implicit preference estimation as a three-
class classification. Accordingly, we have the following objective
functions for the pixel-based and landmark-based estimators:{

LP
pdt =

∑N
i=1 −yi log(ŷ

P
i ),

LL
pdt =

∑N
i=1 −yi log(ŷ

L
i ),

(5)

where yi ∈ R3 is the ground truth preference of the user in the
video xi . ŷPi ∈ R3 and ŷLi ∈ R3 are the predicted preference distribu-
tion vectors of the human reaction in video xi from the pixel-based
and landmark-based estimators, respectively.

Moreover, although the two estimators model the human reac-
tions from different perspectives, for the same video, their evalua-
tions should still be somehow consistent. Therefore, we incorporate
the mutual learning strategy [33, 36], which has shown remarkable
performance in knowledge distillation between two learners, to
encourage information sharing with each other. In particular, we
adopt the most popular Kullback-Leibler divergence between ŷLi
and ŷPi to encourage the consistency between the two learners.

Specifically, we define the objective function as follows,
LL→P
kl =

∑N
i=1 KL(ŷ

L
i | |ŷ

P
i ) =

∑N
i=1 ŷ

L
i log ŷLi

ŷPi
,

LP→L
kl =

∑N
i=1 KL(ŷ

P
i | |ŷ

L
i ) =

∑N
i=1 ŷ

P
i log ŷPi

ŷLi
,

(6)

where L → P and P → L denote the knowledge transferring from
landmark-based estimator to pixel-based estimator and its opposite,
respectively. LL→P

kl and LP→L
kl refer to the regularization for the

landmark-based and pixel-based methods, respectively.
Ultimately, our final objective function can be formulated as,{

LL = LL
pdt + LL→P

kl ,

LP = LP
pdt + LP→L

kl .
(7)

Overall, we alternatively optimize the landmark-based and pixel-
based estimators with the above losses. Notably, for each estimator
optimization, only the corresponding parameters need to be opti-
mized. Once the whole network gets well-optimized, we estimate
the overall score of human reactions for a given video as follows,

ŷi = λŷLi + (1 − λ)ŷPi , (8)

where λ is a trade-off parameter to balance the two parts.

4 EXPERIMENTS
4.1 Dataset
Although some public datasets such as CK+ [26] and AFEW 8.0 [11]
are available to estimate human emotions, they fail to capture hu-
man reactions toward the items. Therefore, we constructed our
own dataset by inviting 120 volunteers. In particular, we created a
specific web application that is able to both collect the volunteer’s
demographic attributes and allow the volunteer to give his/her per-
sonal rate (ranges from 0 to 100) on each observed outfit. Moreover,
while observing the outfits, the volunteer’s reaction is captured
using the volunteer’s device camera. While being recorded the vol-
unteer is free to observe the outfit for amaximum time of 10 seconds.
In each annotation session, 15 outfits are proposed. Ultimately, we
obtained the final dataset, named SentiGarment, comprising 3,345
pieces of data of human facial reactions towards fashion outfits.
Each piece of data consists of a top and a bottom image, a video with
the volunteer’s reaction to the top-bottom pair, his/her preference
score and personal data.

We split the dataset into train and test set following the ratio
of 8 : 2 based on the number of volunteers. We first separate the
testing set selecting 27 volunteers so that: i) there is no overlap
of these volunteers with the training set, ii) each volunteer has
participated in the annotation process just once (i.e. all volunteers
in the testing set have the same number of videos), and iii) we try
to balance the male/female ratio as best as possible. With these
constraints, the final testing set consists of 180 and 225 videos from
12 females and 15 males, respectively. Notably, since the same user
can participate more than 1 session, there is a sensible redundancy
in the training set. Based on the reaction scores, we assign each
video in the dataset to one of three classes: positive, neutral, and
negative. Finally, we obtained 1,334 positive videos, 842 neutral
videos, and 1,169 negative videos.
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Table 1: Performance comparison among differentmethods.

Method Accuracy(%)
PBE 49.14
LBE 40.39

EarlyFusion 49.14
LateFusion 50.37
AffWildNet 41.73

MIMAMO-Net 45.43
Ours 52.84

4.2 Implementation Details
For the pixel-based estimator, we follow the experiment setting
of [31]. The input dimension is set as 16 × 112 × 112 × 3, i.e., l = 16,
w = 112, h = 112, and c = 3. The 3D ConvNet has 8 convolution
layers, 5 max pooling layers and 2 fully connected layers. All 3D
convolution kernels are 3 × 3 × 3 with stride 1 × 1 × 1. All pooling
kernels are 2× 2× 2 with stride 2× 2× 2, except for the first pooling
layer which has kernel size of 1× 2× 2 and stride 1× 2× 2. All fully-
connected layers have 4096 output units. Specifically, we adopted
the adaptive moment estimation method (Adam) [20], and set the
initial learning rate to 1e−4. For the landmark-based estimator,
we set the dimension of the latent representation yielded by the
landmark-based estimator, i.e., the number of hidden states in LSTM,
H = 256. In addition, we utilized the Adam optimizer with β1 = 0.9,
β2 = 0.999 and a fixed learning rate of 5e−3. The batch size is set to
32 and the model is fine-tuned for 500 epochs. We empirically set
the trade-off and temperature parameters as 0.3 and 10, respectively.
All experiments are implemented by PyTorch.

4.3 On Model Comparison
To justify our proposed method, we adopted the following methods.
• PBE. This baseline estimates the user’s preference only relying
on the pixel-based estimator, which can be easily derived from
our proposed method by only optimizing the LP

pdt in Eqn.(5).
• LBE. Similarly, LBE only uses the landmark-based estimator,
and can be derived by only optimizing the LL

pdt in Eqn.(5).
• EarlyFusion. We jointly trained the pixel-based and landmark-
based estimators by feeding the weighted sum of their predicted
preference distributions, i.e., ŷ = β1ŷLt + β2ŷLt , into the cross-
entropy loss. For testing, we used ŷ as the result.

• LateFusion. We first trained the pixel-based and landmark-
based estimators separately. Once each estimator is well-trained,
we used the weighted sum of their respective predicted results
as the final estimated preference distribution of the given video.

• AffWildNet[22]. This baseline is composed of a backbone CNN
(either ResNet-50 or VggFace [27]), upon which two Gated Re-
current Units (GRU) are stacked to regress valence and arousal.
We fine-tuned the pre-trained AffWildNet on our dataset by
substituting the regression layer with a classification one.

• MIMAMO-Net[10]. This method uses a two-stream recurrent
network to combine the micro- and macro-motion features to
improve video emotion recognition. Following the original work,
we aligned and extracted faces from our videos using the Open-
Face toolkit, and then we extracted the respective features from
the pool5_7x7_s1 layer. Finally, we replaced the regressor with a
classifier to accommodate our task.

Table 2: The ablation study of our proposed method.

Method Accuracy(%)
PBE 49.14
LBE 40.39

PBE-w/-Mut 49.14
LBE-w/-Mut 41.48

Table 1 shows the comparison between different approaches on
the SentiGarment dataset.We can derive the following observations:
1) our method surpasses all baselines, which shows the superiority
of the framework over existing methods. 2) PBE shows superiority
over LBE, which implies that employing a 3D ConvNet to model the
video content is more powerful than only utilizing the landmarks
and optical flow. One possible reason is that only relying on the
landmarks may lead to the loss of some useful cues contained
in the video. And 3) our method outperforms both EarlyFusion
and LateFusion, reflecting the superiority of utilizing the mutual
learning strategy to seamlessly combine the pixel-based classifier
and the landmark-based classifier.

4.4 On Mutual Learning
To get a thorough understanding of the mutual learning based
optimization in our model, we conducted experiments to learn
the effect of mutual learning for our PBE and LBE. In particular,
we introduced two derivatives of our model: PBE-w/-Mut and
LBE-w/-Mut, where we train our proposed framework, but only
used the ŷPi and ŷLi as the predicted results of PBE-w/-Mut and
LBE-w/-Mut, respectively. Table 2 shows the ablation study results.
As can be seen, PBE-w/-Mut outperforms PBE, which suggests
that the mutual learning strategy is capable of transferring useful
knowledge from LBE to PBE. However, we noticed that the result
of PBE-w/-Mut is the same as that of PBE. The reason may be that
PBE is much powerful than LBE, and could not distill additional
useful knowledge from LBE during the mutual learning process.

5 CONCLUSION
We presented a novel computer-vision based implicit preference
estimation pipeline, based on three modules: pixel-based estimator,
landmark-based estimator and mutual learning based optimiza-
tion. The approach is a first step towards building an interactive
recommendation system. By relying only on computer vision, the
method is non-intrusive and does not require active engagement
of the customer. To evaluate such method, we collected a dataset of
facial reactions paired with preference labels and trained different
models. We showed the benefits of exploiting the mutual learning
based optimization to combine the pixel-based estimator and the
landmark-based estimator. In the future, we plan to investigate the
interactive recommendation systems based on our current work.
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