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In this article, we deal with the problem of predicting action progress in videos. We argue that this is an

extremely important task, since it can be valuable for a wide range of interaction applications. To this end,

we introduce a novel approach, named ProgressNet, capable of predicting when an action takes place in a

video, where it is located within the frames, and how far it has progressed during its execution. To provide

a general definition of action progress, we ground our work in the linguistics literature, borrowing terms

and concepts to understand which actions can be the subject of progress estimation. As a result, we define

a categorization of actions and their phases. Motivated by the recent success obtained from the interaction

of Convolutional and Recurrent Neural Networks, our model is based on a combination of the Faster R-CNN

framework, to make framewise predictions, and LSTM networks, to estimate action progress through time.

After introducing two evaluation protocols for the task at hand, we demonstrate the capability of our model

to effectively predict action progress on the UCF-101 and J-HMDB datasets.
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1 INTRODUCTION

Humans are not only able to recognize actions and activities, but also they can understand how far
an action has progressed and make important decisions based on this information. From simple
choices, like crossing the street when cars have passed, to more complex activities like intercepting
the ball in a basketball game, an intelligent agent has to recognize and understand how far an
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Fig. 1. The ability to estimate action progress is essential for interaction. In 1977 progress estimation allowed
the boxer Muhammad Ali to dodge 21 punches in 10 s: https://youtu.be/nxZ-J7xit5Y. In the movie “Young
Frankenstein” instead, the monster is not able to estimate progress and react accordingly: https://goo.gl/
muYbCb.

action has advanced at an early stage based only on what it has seen so far. If an agent has to act
to assist humans, then it cannot wait for the end of the action to perform the visual processing
and act accordingly (Figure 1 shows an example sequence for this phenomena). Therefore, the
ultimate goal of action understanding should be the development of an agent equipped with a
fully functional perception action loop, from predicting an action before it happens to following its
progress until it ends. This is supported also by experiments in psychology showing that humans
continuously understand the actions of others to plan their goals [11]. Consequently, a model that
is able to forecast action progress would enable new applications in robotics (e.g., human–robot
interaction, realtime goal definition) and autonomous driving (e.g., avoid road accidents).

Broadly speaking, our work falls into the area of predictive vision, an emerging field that has
been gaining much interest in recent years. Several approaches have been proposed to perform
prediction of the near future, be that of a learned representation [29, 56], a video frame [38, 57], or
directly the action that is going to happen [10, 31]. However, we believe that fully solving action
understanding requires not only to predict the future outcome of an action but also to understand
what has been observed so far in the progress of an action. As a result, in this article we introduce
the novel task of predicting action progress, i.e., the prediction of how far an action has advanced
during its execution. In other words, considering a partial observation of some human action, in
addition to understanding what action and where it is happening, we want to infer how long this
action has been executed for with respect to its duration. As a simple example of application, let
us consider the use case of a social robot trained to interact with humans. The correct behaviour
to respond to a handshake would be to anticipate, with the right timing, the arm motion, so as to
avoid a socially awkward moment in which the person is left hanging. This kind of task cannot be
solved unless the progress of the action is estimated accurately.
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Some closely related problems have been recently addressed by the computer vision community.
First, predicting action progress is conceptually different from action recognition and detection
[14, 61, 62, 65], where the focus is on finding where the action occurred in time and space. Action
completion [18–20, 60, 64, 65] is indeed a related task, where the goal is to predict when an
action can be classified as complete to improve temporal boundaries and the classifier accuracy
on incomplete sequences. However, this is easier than predicting action progress, because it
does not require us to predict the partial progress of an action. Action progress prediction is
an extremely challenging task, since, to be of maximum utility, the prediction should be made
online while observing the video. While a thick crop of literature addresses action detection and
spatio-temporal localization [12, 13, 23, 26, 35, 44, 59, 62, 66], predicting action progress is more
closely related to online action detection [6, 22, 28, 50, 61]. Here the goal is to accurately detect,
as soon as possible, when an action has started and when it has finished, but they do not have a
model to estimate the progress. Some similarities are shared with the task of activity recognition
[30, 54] where the goal is to detect which high-level phase is currently in progress in a long
procedure composed by multiple actions. Differently, action progress focus on such actions that
can be made of one or many movements but can be detected by visual means only. That is harder
than activity recognition where the phases represent states of a process and can also be inferred
by using a knowledge base or by the objects that are in use.

Not every action has a progress to be estimated. For instance, there are actions that are instanta-
neous (such as hitting a ball) or that do not have a clear goal given the available information (such
as walking without a precisely defined destination). Thus, a classification of addressable actions is
needed to successfully model action progress. Unfortunately, such a formal classification is a still
an open research subject, but there is a building evidence in neuroscience that language is strongly
linked to actions and is correlated to similar grammars [3, 42, 53]. As a result, in this work we take
inspiration from the linguistics literature, which extensively discuss the topic of actions and the
category of verbs used to refer to them. We propose a unified view of the problem discussing how
progress can be estimated according to the corresponding verb classification.

In summary, in this article we propose ProgressNet, a model for action progress prediction of
multiple actors using a supervised recurrent neural network fed with convolutional features. The
main contributions of this work are the following:

• We define the new task of action progress prediction, which we believe is a fundamental
problem in developing intelligent planning agents. We take inspiration from linguistics lit-
erature to classify which actions are suitable for the task. We also design and present an
experimental protocol to assess performance.

• Given that actions are often composed of sub-action phases, we propose two formal models
of action progress. A simple model that considers actions in their entirety and one that
introduces a sequence of sub-phases.

• We present a holistic approach capable of predicting action progress while performing
spatio-temporal action detection. ProgressNet can be naturally fitted into any online action
detector model. To encourage precise prediction of progress, we also contribute a novel
Boundary Observant loss that penalizes prediction errors on temporal boundaries.

2 RELATED WORK

Human action understanding has been traditionally framed as a classification task [1, 45]. How-
ever, in recent years, several works have emerged aiming at a more precise semantic annotation
of videos, namely action localization, completion, and prediction.
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Frame-level action localization has been tackled extending state-of-the art object detection ap-
proaches [46] to the spatio-temporal domain. A common strategy is to start from object proposals
and then perform object detection over RGB and optical flow features using convolutional neural
networks [14, 44, 47]. Gkioxari et al. generate action proposals by filtering Selective Search boxes
with motion saliency and fuse motion and temporal decision using an Support Vector Machine
(SVM) [14]. More recent approaches have devised end-to-end tunable architectures integrating re-
gion proposal networks in their model [4, 13, 23, 26, 35, 44, 47, 48, 50, 65]. As discussed in Reference
[47], most action detection works do not deal with untrimmed sequences and do not generate ac-
tion tubes. To overcome this limitation, Saha et al. [47] propose an energy maximization algorithm
to link detections obtained with their framewise detection pipeline. Another way of exploiting the
temporal constraint is to address action detection in videos as a tracking problem, learning action
trackers from data [59]. To allow online action detection, Singh et al. [50] adapted the Single Shot
Multibox Detector [33] to regress and classify action detection boxes in each frame. Then, tubes
are constructed in real time via an incremental greedy matching algorithm. Considering that ac-
tions may have different temporal scales, in Reference [35], the authors go beyond predetermined
temporal scales and propose to use Gaussian kernels to dynamically optimize them.

Approaches concentrating in providing starting and ending timestamps of actions have been
proposed [8, 12, 21, 32, 41, 48, 62]. Heilbron et al. [21] have recently proposed a very fast approach
to generate temporal action proposals based on sparse dictionary learning. Yeung et al. [62] looked
at the problem of temporal action detection as joint action prediction and iterative boundary refine-
ment by training a RNN agent with reinforcement learning. In Shou et al. [48] a three-dimensional
(3D) convolutional neural network is stacked with Convolutional-De-Convolutional filters to ab-
stract semantics and predict actions at the frame-level granularity. They report an improved per-
formance in action detection frame by frame, allowing a more precise localization of temporal
boundaries. More recently, this line of research evolved into the stricter problem of locating an ac-
tion having only a video-level label available [8, 32, 41, 65]. Zhao et al. [65] introduced an explicit
modelization of starting, intermediate, and ending phases via structured temporal pyramid pool-
ing for action localization. They show that this assumption helps to infer the completeness of the
proposals. In [32, 41], the action-context separation is explicitly considered. The idea is that parts
of the video where an action has not taken place can be used as context of the instance, modeled
with an end-to-end [32] or probabilistic [41] approach, to better separate the temporal edges. Es-
corcia et al. [8] specialize on localizing human actions by considering actor proposals derived from
a detector for human and non-human actors intended for images. They use an actor-based atten-
tion mechanism, which is end-to-end trainable. A distinct line of research considers explicitly the
temporal dimension [23, 26] either using 3D ConvNets on tubes [23] or exploiting multiple frames
to generate a tube [26]. However, all these methods do not understand and predict the progress of
actions, but only the starting and ending points. Differently from them, we explicitly model and
predict action progress during the entire action and not only the starting and ending boundaries.

Orthogonal approaches to ours that implicitly model action progress cues can be found in ac-
tion anticipation [2, 6, 22, 36] and completion [18–20, 52, 60, 64, 65]. The former aims at predicting
actions before they start or as soon as possible after their beginning, and the latter instead bina-
rizes the problem by predicting if an ongoing action is finished or not. Early event detection was
first proposed by Hoai et al. [22]. In Reference [22], a method based on Structured Output SVM is
proposed to perform early detection of video events. To this end, they introduce a score function of
class confidences that has a higher value on partially observed actions. In Reference [28], the same
task is tackled using a very fast deep network. Interestingly, the authors noted that the predictabil-
ity of an action can be very different, from instantly to lately predictable. In Reference [36], a Long
Short Term Memory (LSTM) is used to obtain a temporally increasing confidence to discriminate
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between similar actions in early stages, while Aliakbarian et al. [2] combine action and context-
aware features to make predictions when a very small percentage of the action is observed. In
Reference [18], RGB-D data are used to discriminate between complete and incomplete actions
and [52] try to detect missing sub-activities to timely remind them to the user. More recently, Hei-
darivincheh et al. [19] presented an LSTM-based architecture that is able to predict the frame’s
relative position of the completion moment by either classification or regression. This problem
was also further addressed by the same authors in a weakly supervised setting [20].

The growing area of predictive vision [34, 38, 56–58] is also related to action progress prediction.
Given an observed video, the goal is to obtain some kind of prediction of its near future. Vondrick
et al. [56] predict a learned representation and a semantic interpretation, while subsequent works
predict the entire video frame [38, 57]. All these tasks are complementary to predicting action
progress, since, instead of analyzing the progress of an action, they focus on predicting the after-
math of an action based on some preliminary observations. A few recent works have addressed
tasks that are very close to action progress prediction. Neumann and Zisserman [40] framed the
problem of future event prediction by defining a number of representations and loss functions to
detect if and when a specific event will occur. To this end, they attempt to predict and regress the
time to event probability, which is highly related to predicting action progress. In Reference [16], a
residual action recognition model is used to estimate the progress of human activities to implicitly
learn a temporal task grammar with respect to which activities can be localized and predicted.

Finally, a few preliminary attempts to estimate activity progress have been presented in the
medical domain [43, 54] aiming to predict remaining surgery durations or anatomical motions.
Nonetheless, these approaches are limited to predicting which action is in progress while doing
a durative activity made by a sequence of actions, without explicitly predicting how much each
action is completed.

3 ACTION PROGRESS

In addition to categorizing actions (action classification), identifying their boundaries spanning
through the video (action detection), and localizing the area where they are taking place within the
frames (action localization), our goal is to learn to predict the progress of an ongoing action. We
refer to this task as action progress prediction.

Providing a definition of action progress is not trivial. In the following, we analyze the problem
thoroughly and propose two definitions to model progression: (i) a linear interpretation that is
versatile and can be applied to any sequence annotated for action detection and (ii) a phase-based
interpretation where actions are precisely split into sub-events and manually annotated to obtain
a richer representation that captures non-linear dynamics.

To obtain a clear and well reasoned taxonomy of actions and a comprehensive representation
of action progress, we borrow a few concepts from verb and action classifications in linguistics.
These classifications are helpful to understand for which actions progress may be defined and
thus to derive appropriate models. According to Reference [55], verbs can be classified into four
categories: those that express activity, accomplishment, achievement, and state. For our goal, we
are not interested in stative verbs, which are used to describe the truth of a certain property (e.g.,
“someone knows something” describes the state of knowledge and “to know” is considered a stative
verb), and we are instead interested in the remaining categories, since they all describe actions.
About actions, in Reference [5] a distinction is made between punctual and durative actions and
whether actions have a defined goal (referred to as telic and atelic, respectively) (see Table 1).
A logic test to identify telic from atelic actions is the following: SUBJECT was VERB-ing until

something happened and he/she stopped VERB-ing. Did he/she VERB?
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Table 1. Comrie’s Categories of Verbs [5]

Punctual Durative
Telic Achievement (to release) Accomplishment (to drown)
Atelic Semelfactive (to knock) Activity (to walk)

Changeless — State (to know)

Example:

• Mark was walking until Bill made him fall. Did Mark walk? Yes→ Atelic

• Susan was shooting a basketball until Anne made her fall. Did Susan shoot the ball? No→
Telic

Progress can be defined clearly when the action implies a change of state on the actor. Therefore,
durative telic actions are the most appropriate for our task, since they have a duration in time and
a goal that clearly implies a change of state. Punctual actions, being telic or atelic, do not progress,
since they do not have a clear time extent, i.e., they happen instantaneously.

Durative actions can possibly be decomposed in phases. Phases might have a different classifi-
cation from the whole action. There are certain activities that are atelic if looked as a whole but
can be decomposed in telic phases. Walking, for instance, can be reformulated as a sequence of
movements of legs and feet: rise right foot, move leg, land right foot, rise left foot, and so on. All
these sub-actions are telic-durative while the whole action of walking is atelic-durative. Similarly,
telic actions might contain phases with an atelic nature. For instance, the execution of the telic
action Pole Vault always has the same structure, made of telic and atelic phases: running (atelic -

durative), sticking the pole in the ground (telic - punctual), jumping over the bar (telic - durative),
touching ground (telic - punctual), and standing up (telic - durative).

For the scope of our research, there are two main problems that make it hard to develop a
model of action progress. The first is the intrinsic difficulty of annotating temporal boundaries for
any type of action [49]. The second is the difficulty of splitting durative actions into phases and
collecting prior information regarding their structure or subparts. From a computer vision point of
view, it is hard to correctly annotate every single step of a walking action, and it can be considered
even harder to train a classifier to effectively recognize all single short spanned events of such
kind.

Based on these considerations we have developed two distinct models of progression that are
suited for distinct cases: (i) a linear interpretation that applies to actions regarded as a whole and
(ii) a phase-based interpretation where actions are precisely split into sub-events and manually
annotated to obtain a richer representation that captures non-linear dynamics. Annotating actions
with linear progress is trivial yet might not yield semantically accurate labels, whereas phase-based
progress will provide a fine modeling of the evolution of an action although requiring an extensive
annotation cost. An in depth discussion is carried out in Sections 3.1 and 3.2.

Both interpretations are built upon the concept of action tube [14, 47], i.e., a sequence of bound-
ing boxes spanning from a starting frame fS to an ending frame fE and enclosing the subject
performing the action. It is important to tie the definition of progress with a specific action tube.
Bounding boxes in fact are needed, because multiple actors may be present in the frame at the
same time. Whereas they might be doing the same action, they are likely to exhibit a different
action progress. Therefore, we use bounding boxes to be able to provide predictions for each actor
independently, which will be impossible just focusing on the temporal aspect of the action. We
predict the progress values online, frame by frame, by only observing the past frames of the tubes
from tS to the current frame ti .
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3.1 Linear Progress

We provide a first definition of action progress with a linear interpretation. Given a frame fi be-
longing to an action tube in [tS , tE ], action progress can be interpreted as the fraction of the action
that has already passed. Therefore, for each box in a tube at time ti , we define the target action
progress as:

pi =
ti − tS
tE − tS

∈ [0, 1]. (1)

This definition is versatile and can be applied to any sequence annotated for action detection.
A similar linear modeling of action evolution has been previously used in action anticipation [2]
and in action synchronization [7] with encouraging results. Although simple, a key advantage of
this definition is that it does not require us to define any prior information regarding the structure
or subparts of an action, making it applicable to a large set of actions. As a result, we can learn
predictive models from any dataset containing spatio-temporal boundary annotations. This means
that the task of action progress in its linear interpretation does not require us to collect additional
annotations for existing datasets, since the action progress values can be directly inferred from the
temporal annotations. This is a major strength, also considering the intrinsic difficulty of anno-
tating action temporal boundaries [49]. While this model is best suited for durative telic actions,
in the experimental section we show that it is also reasonable in many cases, including durative
atelic actions.

3.2 Phase-based Progress

Despite the simplicity and effectiveness of adopting a linear interpretation of progress, certain
actions may indeed exhibit dilations or contractions in the execution rate, yielding to a nonlinear
progression. This behavior is observable when the action can be broken down into a sequence of
sub-phases that defines its structure.

Additionally, in certain cases the structure is clear and sequential while in other cases it is not.
Usually telic actions exhibit this structure. However, atelic actions, such as Dancing, may be defined
by a random sequence of moves with no identifiable structure, which can even follow cyclic or
erratic patterns.

The phase-based progress formulation provides a better definition of action progress. In this
approach, we first split a durative action into phases, manually annotating their temporal bound-
aries. We note that each phase, let it be telic or atelic, is always delimited by a punctual action
that denotes a transition from one phase to another. Therefore, we represent durative actions as a
sequence of telic or atelic phases, separated by punctual actions. An important advantage of ex-
ploiting punctual actions is that they are unambiguous and easy to annotate, since they define a
precise instant in time in the development of the action (a single frame) and there is no need to
specify their telicity or atelicity. This yields also to a precise annotation of durative phases, since
punctual ones act as temporal boundaries. Figure 4 helps to understand these concepts by showing
frames of the action class PoleVault: punctual actions are clearly identifiable as single frames and
therefore can be manually labeled without uncertainty by an annotator. It is interesting to notice
that, despite intra-class variation, punctual phases all carry the same meaning and have common
visual traits (e.g., the pole to the ground or the athlete over the bar).

After identifying phases, we need to assign a progress value to each frame in an action tube.
We base our phase-based progress formulation on the fact that each instance of a punctual phase
should have the same progress value. Since punctual phases act as boundaries for durative ac-
tions, which might exhibit high variability in duration and execution speed, this makes the overall
resulting progress non linear.
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To establish appropriate ground-truth progress values, we first build a prototype action for each
class, where the length of each durative phase is averaged across all instances in the training set. A
generic instance of an action can be interpreted as a deformation of the prototype, where durative
phases are compressed or dilated (i.e., slowed down or accelerated) with respect to their expected
duration. According to this, we label the action prototype with the linear interpretation of progress
(Equation (1)), thus defining ground-truth progress for punctual phases, since these are shared
across instances. Once punctual phases have been labeled, we can label durative phases knowing
that their values must span over a well-defined interval [pS ,pE ] given by the progress of the two
punctual boundaries.

To assign a progress value pi to frames belonging to durative phases, we adopt the following
criteria, depending if the phase is telic or atelic:

• pi =
i

Ni
+ pS for telic phases

• pi =
(pS+pE )

2 for atelic phases

where i is the index of the frame within the current phase and Ni the prototype duration of the
current phase. This corresponds to a linear progress for telic phases, which are usually executed
uniformly, since they represent events with a simple structure (rising hands, a jump, or a kick of
a ball). However, atelic phases can exhibit more complex behaviors with lack of structure. Since it
is hard to establish a clear progression of states in atelic phases, we simply assign the expectation
of progress inside the interval, based on the value of its boundaries.

It has to be noted that whereas the progress of prototype phases is defined linearly, the resulting
progress values for real action tubes are in fact non linear (piecewise linear). Aligning the progress
of each action tube to have the same value in correspondence of punctual phases is a form of
action synchronization, where the execution rate of each phase is normalized to have the same
speed. Executions of an action with a slow phase will therefore exhibit a slower growth of progress
compared to other executions where the same phase happens quickly.

This definition of progress is more expressive than the linear interpretation, allowing us to
model more complex dynamics. To better understand the advantage of adopting the phase-based
progress, in Figure 3 a comparison is shown between the two types of annotations. When there
is variability in the execution of a phase, progress values in the linear interpretation may become
unaligned, yielding to an imprecise representation.

At the same time, the phase-based progress requires a demanding annotation process, since
each action has to be divided into phases and all the boundaries need to be manually annotated. In
Section 5.1 the annotation procedure for the UCF-101 dataset is detailed. The collected annotations
will be released upon publication.

4 PROGRESSNET

The whole architecture of our method is shown in Figure 2, highlighting the first branch, which
is dedicated to action classification and localization, and the second branch, which predicts action
progress. We believe that sequence modelling can have a huge impact on solving the task at hand,
since time is a signal that carries a highly informative content. Therefore, we treat videos as or-
dered sequences and propose a temporal model that encodes the action progress with a Recurrent
Neural Network. In particular, we use a model with two stacked Long Short-Term Memory layers
(LSTM), with 64 and 32 hidden units, respectively, plus a final fully connected layer with a sig-
moid activation to predict action progress. Since actions can be also seen as transformations on
the environment [58], we feed the LSTMs with a feature representing regions and their context. We
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Fig. 2. Proposed Architecture. On the left (highlighted in orange), we show the classification and localization
data flows for tube generation. On the right (highlighted in yellow), our ProgressNet. Region (ROI FC6) and
Contextual features (SPP FC6) from the last convolutional map are concatenated and then fed to a Fully
Connected layer (FC7). Two cascaded LSTMs perform action progress prediction.

Fig. 3. Linear progress vs. Phase-based progress. Each rectangle represents a frame in an action tube. Differ-
ent colors correspond to different phases. Blue rectangles represent punctual phases, which act as boundaries
for durative phases. In the phase-based definition, progress is defined to align phase boundaries across dif-
ferent executions of the same action.

concatenate a contextual feature, computed by spatial pyramid pooling (SPP) of the whole frame
[17], with a region feature extracted with ROI Pooling [46]. The two representations are blended
with a fully connected layer (FC7). The usage of a SPP layer allows us to encode contextual infor-
mation for arbitrarily-sized images. We named this model ProgressNet.

While the backbone of our model is inspired by Reference [47], our architecture has several
novel design choices: the ability to process data including both the observed actor and context
through RoI Pooling plus SPP; the combination of convolutional and recurrent layers to separate
feature representation and temporal modeling; and a multi-task design capable of performing clas-
sification, localization, and progress estimation.

Our model emits a prediction pi ∈ [0, 1] at each time step i in an online fashion, with the LSTMs
attention windows that keep track of the whole past history, i.e., from the beginning of the tube
of interest until the current time step. We rely on an action detector [47] to obtain scored boxes
at each frame. Such framewise action detectors are derived from object detector frameworks and
fine-tuned on action bounding boxes. Features are extracted from the last convolutional feature
map of such models by re-projecting each linked box onto it through ROI Pooling. Each tube is
evaluated online independently in parallel.

We use ReLU non linearities after every fully connected layer and dropout to moderate over-
fitting. Our approach is online and does not require complete tubes to perform predictions at test
time. The only requirement of ProgressNet is to obtain a sequence of linked bounding boxes form-
ing the tube. Both online and offline solutions to this problem have been proposed [47, 50]. It has
also to be noticed that ProgressNet adds a computational footprint of about 1 ms per frame on a
TITAN XP Pascal GPU, making it feasible to work in real time.
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Fig. 4. Example of punctual phases for the PoleVault class. Five punctual phases can be found: the starting
point of the action, the instant when the athlete puts the pole on the ground, the moment of maximum
elevation during the jump, the end of the jump landing on the mattress, and the end point of the action.
Start and ending points of the action correspond to the boundaries of the action tube. Intermediate punctual
phases are clearly identifiable with a single video frame and therefore are easy to annotate. Punctual phases
are useful, since they correspond to the boundaries of durative ones.

4.1 Learning

We initialize the spatio-temporal localization branch of our network, highlighted in orange in
Figure 2, using a pre-trained action detector such as in References [47, 50] while the remaining
layers are learned from scratch. To train our ProgressNet we use ground-truth action tubes as
training samples.

To avoid overfitting the network, we apply the two following augmentation strategies. First,
for every tube we randomly pick a starting point and a duration, so as to generate a shorter or
equal tube (keeping the same ground-truth progress values in the chosen interval). For instance,
if the picked starting point is at the middle of the video and the duration is half the video length,
then the corresponding ground-truth progress targets would be the values in the interval [0.5, 1.0].
This also forces the model to not assume 0 as starting progress value. Second, for every tube we
generate a subsampled version, reducing the frame rate by a random factor uniformly distributed
in [1, 10]. This second strategy helps in generalizing with respect to the speed of execution of
different instances of the same action class.

To encourage the network to be more precise on temporal boundaries of durative phases, we
introduce a Boundary Observant (BO) loss. The idea is that phase boundaries (i.e., the punctual
actions) do not have ambiguity and less error should be allowed on them. On the contrary, inter-
mediate parts are less certain and a higher error can be tolerated. As an example, the frames shown
in Figure 4 correspond to punctual phases and it is observable that their progress points can be
roughly estimated even with single frames. What we want to enforce is a sufficiently low error
on these instants that should help in modeling the evolution of what happens in between (i.e.,
the durative phases). We present our BO loss in a general form, considering actions composed by
multiple phases. The linear interpretation is a simpler case of phase-based progress with a single
durative phase, delimited by the start and the end of the whole action.
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Given a prediction p̂i and a target value pi , for each phase k of an action spanning across an
interval [lk ,uk ], we define a potential ek (pi , p̂i ) with unitary cost for predictions that exceed the
boundaries, decreasing it toward zero as the target gets closer to the center of the interval mk =

(lk + uk )/2:

ek (pi , p̂i ) = min

⎡
⎢
⎢
⎢
⎢
⎣

1,

(
pi −mk

rk

√
2

)2

+

(
p̂i −mk

rk

√
2

)2⎤
⎥
⎥
⎥
⎥
⎦

. (2)

The potential is derived from the circle equation (x − xc )2 + (y − yc )2 = r 2 of center (xc ,yc )
and radius r . Since we want ek = 1 on the boundaries, we scale the circle to be circumscribed
to the square of side uk − lk . In other words, representing these potentials on a 2D coordinate
system with true and predicted progress values on the axes, we are identifying a circular region
centered in (mk ,mk ) that spans over an entire phase and passes through the points lk , lk and

(uk ,uk ). Since the phase is delimited by the interval [lk ,uk ], the radius of the circle will be rk

√
2,

where rk = (uk − lk )/2.
The potentials are computed for each phase and pooled together by a minimum operator. We

want each phase to be defined only by its correspondent potential. This is possible with the mini-
mum pooling, since ek < 1 inside its circular region (the phase) and ek = 1 outside and since phases
cover non overlapping areas. The Boundary Observant loss is then obtained by weighing the error
with an L1 loss and averaging across samples:

LBO =
1

N

N∑
i

min
k
{ek } 			pi − p̂i

	
	
	
. (3)

Compared to the L2 loss for regression, the BO loss penalizes errors on the boundaries more
than in intermediate parts, since we want to precisely identify when the phase starts and ends. At
the same time, it avoids the trivial solution of always predicting the intermediate value p̂ = 0.5.
Figure 5 shows the difference between the two loss functions, where predicted values are on the
x-axis and targets on the y-axis. Whereas the L2 loss function is always the same, BO adapts to
the structure of the action and its phases. Note from the definition of progress that only values in
[0, 1] can be expected.

We initialize all layers of ProgressNet with the Xavier [15] method and employ the Adam [27]
optimizer with a learning rate of 10−4. We use dropout with a probability of 0.5 on the fully con-
nected layers.

5 EXPERIMENTAL SETTING

In this section, we discuss the experimental setting to evaluate action progress prediction for
spatio-temporal tubes and propose two evaluation protocols. We introduce some simple baselines
and show the benefits of our approach.

We experiment on the J-HMDB [25] and UCF-101 [51] datasets. J-HMDB consists of 21 action
classes and 928 videos, annotated with body joints from which spatial boxes can be inferred. All
the videos are temporally trimmed and contain only one action. Since clips are all very short, all
actions can be considered to be telic. We use this dataset to benchmark action progress prediction
with a linear interpretation. UCF-101 contains 24 classes annotated for spatio-temporal action
localization. It is a more challenging dataset, because actions are temporally untrimmed and there
can be more than one action of the same class per video. Moreover, it contains video sequences
with large variation in appearance, scale, and illumination. We use this dataset to predict action
progress both with the linear and the phase-based interpretations of progress, which required to
manually identify and annotate all sub-phases of the actions in the dataset. Section 5.1 details the
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Fig. 5. Comparison between the L2 (left) and the Boundary Observant (right) loss functions. Predicted values
and ground-truth targets are on the two axes. It can be seen that the Boundary Observant loss is stricter
against errors on the action boundaries. The Boundary Observant loss depends on the structure of each
action, penalizing errors close phase boundaries. Examples for a few action classes are shown.

annotation process and which phases have been used. We adopt the same split of UCF-101 used in
References [44, 47, 59, 63].

Note that larger datasets such as THUMOS [24] and ActivityNet [9] do not provide bounding
box annotations and therefore cannot be used in our setting.

5.1 Phase Annotation

We annotated phases for all actions in the UCF-101 dataset [51]. Punctual events are manually
identified and used as boundaries for durative phases. We specify whether a durative phase is telic
or atelic to assign the proper progress values as defined in Section 3.2.

We observe that the original annotations have imprecise temporal boundaries for our task. For
instance, there is a different amount of waiting before a golf swing or a dive. We believe that such
durative atelic phases are tied to the known difficulties [39] in clearly identifying the temporal
boundaries of an action where Pre-actional phases may be present. Hence, by annotating punctual
events, the annotator has unambiguous instructions about which frame to annotate and the un-
certainty is reduced. We split every action in the dataset as in Table 2. To easily identify phases
and facilitate the annotation process, we use verbs in their -ing form to denote durative phases
and in the infinitive form for punctual ones.

The annotators were asked to identify punctual actions (i.e., select the corresponding frame)
for each action tube, starting from the original spatio-temporal annotations.1 Durative phases are
automatically labeled, since they are defined by two punctual boundaries. Among all annotated
actions, we have annotated a total of 27,120 phases, 15,789 of which are punctual and 11,331 du-
rative. Punctual phases by definition have all length equal to 1. Instead, we found durative phases
to have an average duration of 22 frames.

1We used the revised annotations available at https://github.com/gurkirt/corrected-UCF101-Annots.
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Table 2. Action Phases Annotated for the UCF-101 Dataset

Action Punctual Durative Punctual Durative Punctual Durative Punctual Durative Punctual Durative Punctual

Basketball Start Rising ball Shoot ball Lowering hands End

BasketballDunk Start Jumping Dunk Landing End

Biking Start Cycling End

CliffDiving Start Waiting Start jump Diving Land in water Swimming End

CricketBowling Start Running Start charge Charging shot Shoot ball Stop running End

Diving Start Approaching Start jump Jumping Dive Somersaulting Stretch body Falling Land in water Swimming End

Fencing Start Fencing End

FloorGymnastics Start Standing Start running Running Jump Somersaulting Land Rising arms Arms up Standing End

GolfSwing Start Standing Start charge Charging Max charge Shooting Hit ball Rising club Top elevation Waiting End

HorseRiding Start Riding End

IceDancing Start Dancing End

LongJump Start Running Jump Jumping Land Standing up End

PoleVault Start Running Pole down Jumping Over bar Falling End jump Standing up End

RopeClimbing Start Climbing End

SalsaSpin Start Dancing End

SkateBoarding Start Skateboarding End

Skiing Start Skiing End

Skijet Start Skijet End

SoccerJuggling Start Juggling End

Surfing Start Surfing End

TennisSwing Start Opening Open Hitting ball Hit ball Closing Closed Moving End

TrampolineJumping Start Jumping End

VolleyballSpiking Start Running Start jump Jumping Hit ball Landing Land Moving End

WalkingWithDog Start Walking End

Punctual phases are denoted in blue, telic in green, and atelic in orange.

5.2 Metrics

To evaluate the task of action progress prediction, we introduce two evaluation metrics.

Framewise Mean Squared Error. This metric tells how well the model behaves at predicting action
progress when the spatio-temporal coordinates of the actions are known. Test data are evaluated
frame by frame by taking the predictions p̂i on the ground-truth boxes Bi and comparing them
with action progress targets pi . We compute mean squared error MSE = | |p̂i − pi | |2 across each
class. Being computed on ground-truth boxes, this metric assumes perfect detections and thus
disregards the action detection task, only evaluating how well progress prediction works.

Average Progress Precision. Average Progress Precision (APP) is identical to framewise Average
Precision (Frame-AP) [14] with the difference that true positives must have a progress that lays
within a margin from the ground-truth target. Frame-AP measures the area under the precision-
recall curve for the detections in each frame. A detection is considered a hit if its Intersection over
Union (IoU) with the ground truth is bigger than a threshold τ and the class label is correct. In our
case, we fix τ = 0.5 and evaluate the results at different progress margins m in [0, 1]. A predicted

bounding box B̂i is matched with a ground-truth box Bi and considered a true positive when Bi

has not been already matched and the following conditions are met:

IoU (B̂i ,Bi ) ≥ τ , |p̂i − pi | ≤ m, (4)
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where p̂i is the predicted progress, pi is the ground-truth progress, and m is the progress margin.
We compute Average Progress Precision for each class and report a mean (mAPP) value for a set
ofm values.

5.3 Implementation Details

In practice, we observed that on some classes of the UCF-101 dataset it is hard to learn accurate
progress prediction models. These are action classes like Biking or WalkingWithDog that are com-
pletely atelic and even for a human observer is hard to guess how far the action has progressed.
Therefore, we extended our framework by adopting a curriculum learning strategy. First, the model
is trained as described in Section 4.1 on classes that have at least a telic phase.2 Then, we fix all
convolutional, FC and LSTM layers and fine-tune the FC8 layer that is used to perform progress
prediction from the last LSTM output on the whole UCF-101 dataset. This strategy improves the
convergence of the model.

6 EXPERIMENTS

In this section, we report the experimental results on the task of predicting action progress. We first
present an analysis of ProgressNet using a linear progress formulation and then using phase-based
progress. Since ProgressNet is a multitask approach, we start by measuring progress estimation
on perfectly localized actions, i.e., discarding possible action localization errors. In addition, we
perform several ablation studies, underlining the importance of the Boundary Observant loss and
the behavior of our method on partially observed action tubes. We then test the method on real
detected tubes with the full model and, finally, report a qualitative analysis that shows some success
and failure cases.

6.1 Linear Progress

Action progress on correctly localized actions. In this first experiment, we evaluate the ability
of our method to predict action progress on correctly localized actions in both time and space.
We take the ground-truth tubes of actions on the test set and compare the MSE of three variants
of our method: the full architecture trained with our Boundary Observant loss (ProgressNet), the
same model trained with L2 loss (ProgressNet L2), and a reduced memoryless variant (ProgressNet

Static).
The comparison of our full model against ProgressNet L2 is useful to understand the contribu-

tion of the Boundary Observant loss with respect to a simpler L2 loss. To underline the importance
of using recurrent networks in action progress prediction, in the variant ProgressNet Static we
substitute the two LSTMs with two fully connected layers that predict progress framewise.

In Table 3, we report the MSE results for a linear progress on both the J-HMDB and UCF-101
datasets. In addition to the variants of our models, we provide two baselines: random prediction
and constant prediction. The random prediction provides us with a higher bound on the MSE
values. For the constant prediction, we always predict the progress expectation p̂ = 0.5 for every
frame, which is a trivial solution that obtains good MSE results. Both are clearly far from being
informative for the task.

We first observe that the MSE values are consistent among the two datasets, with Progress-
Net models ahead of the other methods. ProgressNet and ProgressNet L2 obtain a much lower
error than ProgressNet Static and the baselines. This confirms the ability of our model to under-
stand action progress. In particular, the best result is obtained with ProgressNet, proving that our

2This subset consists of the following classes: Basketball, BasketballDunk, CliffDiving, CricketBowling, Diving, FloorGym-

nastics, GolfSwing, LongJump, PoleVault, TennisSwing, VolleyballSpiking.
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Table 3. Mean Square Error Values for Action
Progress Prediction on the UCF-101 and

J-HMDB Datasets

J-HMDB UCF-101
Random 0.166 0.166
0.5 0.084 0.083
ProgressNet Static 0.079 0.104
ProgressNet L2 0.032 0.052
ProgressNet 0.026 0.049

Results are averaged among all classes.

Fig. 6. Mean Squared Error obtained by three formulations of our model (ProgressNet Static, ProgressNet L2,
and ProgressNet) on the J-HMDB dataset. Random and constant 0.5 predictions are reported as a reference.

Boundary Observant loss plays an important role in training the network effectively. ProgressNet
Static has an inferior MSE than the variants with memory, suggesting that single frames for some
classes can be ambiguous and a temporal context can help to accurately predict action progress. In
particular, observing the class breakdown for J-HMDB in Figure 6, we note that the static model
gives better MSE values for some actions such as Swing Baseball and Stand. This is due to the fact
that such actions have clearly identifiable states, which help to recognize the development of the
action. However, classes such as Clap and Shoot Gun are hardly addressed with models without
memory, because they exhibit only few key poses that can reliably establish the progress.

In Figure 7, we show t-SNE [37] embeddings of the hidden states of the second LSTM layer. Each
point represents a frame of the J-HMDB test set, and its projected hidden state has accumulated
knowledge over all previous frames in the action tube. Color coding in Figure 7 reflects the ground-
truth progress of the samples; therefore a desirable t-SNE projection should highlight the presence
of a structure where data are distributed according to color (i.e., progress). We report both the
embeddings for the whole test set and for four classes projected independently. In all figures, we
note that points are organized in the t-SNE projection space such that progress increases radially
from points labeled with 0.1 toward points labeled with 1.0. This hints at the fact that ProgressNet
has learned directions in the LSTM hidden state space that follow action progress, which allows
the final regressor to estimate an accurate value. Looking at the classwise projections, it can be
observed that several directions are discovered, taking into account intra-class variations.

The t-SNE projections suggest that the architecture is modeling action progress as a distance
from a starting point in the latent space along these directions. Since the observed directions in
certain cases vary a lot, this might look difficult to achieve with a single linear layer. Despite
this, it must be noted that t-SNEs are a tool for qualitative inspection used to highlight patterns.
Samples are in fact projected from a much higher dimensional space and therefore the plot might
not show the full non-linearity of the hidden space, which may sometimes hide linear structures.
Furthermore, the whole network is trained as a multitask framework, predicting class and progress
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Fig. 7. t-SNE visualizations of ProgressNet’s hidden states of the second LSTM layer on the J-HMDB test set.
Each point corresponds to a frame colored with its ground-truth progress, quantized with a 0.1 granularity.
On the left, the states of four classes are shown separately, while in the right all the test frames are shown
together.

Fig. 8. MSE breakdown grouped by progress intervals for the J-HMDB dataset. Similar results are obtained
with UCF-101.

at the same time, so the features before the LSTMs encode the class of the action. Since data are
projected from a 64-dimensional to a 2-dimensional space, all this information is necessarily mixed
and what could be represented linearly in the original feature space might not appear so in a
projection trained to reflect geometric properties such as distance between points.

Error at different progress points. To understand when our model is more prone to errors,
with respect to the action progression, in Figure 8 we show a breakdown of the error by dividing
the MSE obtained in the previous experiment according to the ground-truth progress. It can be
seen how action progress is harder at the boundaries and how our Boundary Observant loss helps
in mitigating this difficulty.

Expected length and partially observed tubes. Despite the simple progress model, our ap-
proach is not just predicting incrementing linear values over an expected tube length. To show
that we are able to understand the action progress even on truncated or generally incomplete
tubes, we test an additional baseline where progress is estimated as the ratio between the frame
ID in the tube and the expected length of the predicted class (estimated on the training videos).

This baseline obtains on UCF-101 an MSE of 0.112, which is only lower than Random (0.166) and
is largely outperformed by our method. Moreover, we show how it suffers on partially observed
tubes. In Figure 9, we report MSE values for ProgressNet and the expected length baseline varying
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Fig. 9. MSE on partially observed tubes of UCF-101. Each block depicts an experimental setting with a dif-
ferent tube fraction, picking the beginning and the end in [0, 0.25, 0.5, 0.75, 1.0]. The first value is the MSE
of ProgressNet (PNet) while the second one of the expected length baseline (EL). ProgressNet wins in 8 of
10 cases.

Fig. 10. mAPP on the UCF-101 and J-HMDB datasets.

the observation window of the tubes. ProgressNet largely outperforms the baseline except when
observing a small portion of the tube at the beginning of the action.

Action progress with the full pipeline. In this experiment, we evaluate the performance of ac-
tion progress while also performing the spatio-temporal action detection with the entire pipeline.
Differently from the previous experiment, we test the full approach where action tubes are gener-
ated by the detector. In Figure 10, we report the mAPP of ProgressNet (trained with BO loss), Pro-
gressNet Static, and the two baselines Random and 0.5 on both the UCF-101 and J-HMDB bench-
marks. Note that the mAPP upper bound is given by standard mean Frame-AP [14], which is equal
to mAPP with marginm = 1. In the p̂ = 0.5 baseline, this upper bound is reached withm = 0.5.

It can be seen that ProgressNet has mAPP higher than the baselines for stricter progress margin.
This confirms that our approach is able to predict action progress correctly even when tubes are
noisy such as those generated by a detector. ProgressNet Static exhibits a lower performance than
ProgressNet, confirming again that the memory is helpful to model action progress.

Architecture of the Network. We trained ProgressNet with just the first LSTM layer and report
an increase of MSE to 0.081 on the UCF-101 dataset. This performs on par with the 0.5 baseline
(0.083) and providing good results only on actions with simple dynamics (i.e., Diving, GolfSwing).
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Table 4. Mean Squared Error Values on UCF-101
with Phase-based Progress

All Telic Atelic
ProgressNet Static 0.142 0.197 0.132
ProgressNet L2 0.024 0.045 0.008

ProgressNet 0.021 0.037 0.010

Results are shown averaged over all classes as well as

considering only telic actions or atelic actions.

Fig. 11. MSE values with phase-based progress for telic actions, comparing ProgressNet trained with the L2
and BO losses.

6.2 Phase-based Progress

We trained ProgressNet also using phase-based annotations on UCF-101. Labeling actions with a
phase based progress allows us to provide a better characterization of the evolution of the action.

Action progress on correctly localized actions. In Table 4, we report the MSE obtained by
the three variants of our method. Again, ProgressNet Static obtains a much higher error than
the versions equipped with LSTMs, and using the Boundary Observant loss slightly improves the
capability of the network over an L2 loss. Interestingly, the biggest gain is observed on telic actions
(i.e., actions with at least a telic phase), whereas atelic action does not seem to be affected by the BO
loss. This is due to the fact that purely atelic actions do not have well-defined boundaries. In fact
in the case of UCF-101 the boundaries of atelic actions often correspond with starting and ending
frames of the videos. To better underline the importance of the Boundary Observant loss for telic
actions, a classwise comparison of ProgressNet with L2 and BO losses is shown in Figure 11. It
can be seen that most actions improve considerably when the model is forced to perform well on
boundaries.

Since the Boundary Observant loss forces training to penalize errors more on phase boundaries,
we investigate the behavior of the model on punctual phases. Since such phases are always de-
fined within a single frame, we measure the average number of frames Δf between the frame fk
representing the punctual phase and the frame with the closest predicted progress p̂:

Δf =
1

K

K∑
k=1

| fk − arg min
i

(pk − p̂i ) |. (5)

This metric highlights the temporal offset between the punctual phase and when its progress is
estimated by the model. Also in this case, as can be observed in Figure 12, a comparison with the
L2 loss highlights the importance of the Boundary Observant loss. The model largely benefits from
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Fig. 12. Temporal offset between real and predicted progress for punctual phases, measured in number of
frames.

Fig. 13. mAPP on the UCF-101 using phase-based annotations.

the usage of the loss, with the temporal lag of the predictions Δf being reduced to under a second
(25 frames) in almost all cases.

Action progress with the full pipeline. When testing ProgressNet with the full pipeline, i.e.,
evaluating also how well the localization branch performs in conjunction with progress estimation,
we can see that predictions are closer to the ground truth compared to the same model trained
with the linear progress formulation. This hints to the fact that phase-based progress reduces
annotation ambiguity and therefore aids the optimization of the model. This trend can be observed
in Figure 13, where the mAPP for ProgressNet and ProgressNet Static, along with the Random
baseline, is reported varying the margin threshold. Interestingly, even the static version of the
model is able to perform better than its counterpart with linear progress labels (see Figure 10),
suggesting once again that the model is able to better understand the visual cues that are part of
the development of the action.

Embedding comparison. We compare the results obtained by ProgressNet adopting feature
embeddings from a state-of-the-art method that performs a related task, namely future frame syn-
thesis. The rationale of this experiment is to validate the architectural choice of using a feature
extractor specifically targeted for action progress estimation rather than taking generic features
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Fig. 14. Qualitative results with the linear based model (green frame) and phase-based model (blue frame).
Each row represents the progression of an action. Progress values are plotted inside the detection box with
time on the x-axis and progress values on the y-axis. Progress targets are shown in green and predicted
progresses in blue.

from a pretrained model. As a feature extractor, we adopt Deep Voxel Flow (DWF) [34]. The model
is composed of a fully convolutional encoder and decoder with a hourglass structure that takes
a pair of temporally adjacent frames and generates the future one. We extract a convolutional
feature map with 256 channels from the output of the encoder and apply ROI Pooling to project
the bounding box enclosing the actor onto it. The resulting features are then fed to the temporal
branch of ProgressNet that processes them with the LSTMs and the final fully connected layer to
emit predictions. Since Deep Voxel Flow uses pairs of frames as input, we feed also the previous
frame along with the current one to the model. We utilize the model with pretrained weights on
UCF-101, which has been released online by the authors. As for ProgressNet we keep the training
settings unchanged and we adopt phase-based annotations.

ProgressNet with DWF embeddings is still able to achieve appreciable performance on the task
of action progress prediction, yet demonstrating a lower precision than the regular ProgressNet.
In fact, the model obtains an MSE of 0.032, which is 52% higher than the original error (Table 4).
Whereas the model is still able to correctly model atelic actions, achieving an error of 0.012, with
a negligible increment of 0.002, DWF features lead to a worse modeling of telic actions: Whereas
ProgressNet obtains an MSE of 0.037, the error of ProgressNet with Deep Voxel Flow rises to 0.055.

This highlights that, despite the tasks of estimating action progress and predicting future frames
are indeed relevant to each other (since they both need to understand how an action evolves
through time), action progress prediction is better dealt with a specifically designed model.
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6.3 Qualitative Analysis

We inspect the results of ProgressNet trained with linear annotations and with phase-based anno-
tations. Figure 14 shows some qualitative results with the two models on the UCF-101 dataset. It
is interesting to notice how in some of the examples with the linear model, the predicted progress
does not have a decise linear trend. Instead, it appears to follow the visual appearance of the action,
changing its trend when there is a change in the semantics of the action. It appears that the model
trained with the linear model has discovered to some extent the states that are made explicit with
the phase-based annotations. For instance, the running phases in the first (LongJump) and third
row (PoleVaults) clearly exhibit a different trend compared to the final parts of the actions, where
the predictions increase more steadily toward completion. This behavior becomes evident when
action phases are taken into account by the model. It can be seen that in the three examples the
predicted progress curves change their slope when entering into a different phase.

7 CONCLUSION

In this article, we introduced ProgressNet, a model that can predict spatio-temporal localization
of actions and at the same time understand their evolution by predicting progress online. We
proposed two interpretations on progress: first, a linear one that has the advantage of being simple
and applicable to any action detection dataset without any manual annotation, and, second, a
phase-based interpretation that is more complex and requires a detailed manual annotation but
at the same time provides a much richer and precise description of the ongoing action. To offer
an appropriate study of action progress, we grounded our findings in the linguistics literature and
terminology to characterize actions. In addition to our model, we proposed a Boundary Observant
loss that helps to avoid trivial solutions by taking into account punctual phases that are present in
the execution of the action. Experiments on two datasets showed that the proposed model is able
to obtain promising performance.
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